首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Fibers of PA9‐T, a new semiaromatic polyamide containing a long aliphatic chain, were prepared by melt spinning. As‐spun fibers were subsequently drawn with a CO2 laser‐heated drawing system at different draw ratios and various drawing velocities. On‐line observations of drawing points deciphered two drawing states; namely, flow drawing and neck drawing, over the entire range of drawing. Drawing stress revealed that flow drawing is induced by slight drawing stress under a low draw ratio up to 3, and neck drawing is induced by relatively high drawing stress under a higher draw ratio. The effect of drawing stress and drawing velocity on the development of the structure and properties has been characterized through analysis of birefringence, density, WAXD patterns, and tensile, thermal, and dynamic viscoelastic properties. For the neck‐drawn fibers, almost proportional enhancements of crystallinity and molecular orientation with drawing stress were observed. The flow‐drawn fibers have an essentially amorphous structure, and birefringence and density do not always have a linear relation with properties. The fibers drawn at high drawing speed exhibit improved fiber structure and superior mechanical properties. The maximum tensile strength and Young's modulus of PA9‐T drawn fibers were found to be 652 MPa and 5.3 GPa, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 433–444, 2004  相似文献   

2.
This study presents a novel photothermal drawing of poly(ethylene terephthalate) (PET)/multiwalled carbon nanotube (MWCNT) fibers. The photothermal drawing was carried out using the near infrared laser‐induced photothermal properties of MWCNTs. An uniform fiber surface was obtained from a continuous necking deformation of the undrawn fibers, particularly at a draw ratio of 4 and higher. The breaking stress and modulus of the photothermally drawn PET/MWCNT fibers were significantly enhanced, in comparison to those of hot drawn fibers at the same draw ratio. The enhanced mechanical properties were ascribed to the increased orientation of PET chains and MWCNTs as well as PET crystallinity due to photothermal drawing. In particular, a significantly higher degree of orientation of the MWCNTs along the fiber axis was obtained from photothermal drawing, as shown in polarized Raman spectra measurements. The photothermal drawing in this study has the potential to enhance the mechanical properties of fibers containing MWCNTs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 603–609  相似文献   

3.
Low‐orientation and amorphous poly(ethylene terephthalate) fibers were drawn continuously with heating by carbon dioxide (CO2) laser radiation. The tensile properties were examined in terms of the birefringence and network draw ratio, which was estimated from the strain shift of true stress–strain curves. Two drawing forms, neck drawing with a draw efficiency (the ratio of the network draw ratio to the actual draw ratio) of about unity and flow drawing with a draw efficiency of about zero, were found to be stable in the continuous drawing process. Meanwhile, any draw‐efficiency value between zero and unity could be obtained in the batch‐drawing process. The object whose orientation was estimated by the network draw ratio differed from that estimated by birefringence. Two linear relationships were found, between the network draw ratio and tensile strength and between the birefringence and initial modulus. The true stress at breaking increased with the network draw ratio of the CO2‐laser‐heated drawn fibers, and when the draw ratio exceeded 5.0, it became higher than that for batch‐drawn fibers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2322–2331, 2003  相似文献   

4.
Polyethylene (PE) fibers were prepared by ethylene extrusion polymerization with an MCM‐41‐supported titanocene catalyst. The morphological and mechanical properties of these nascent PE fibers were investigated. Three levels of fibrous morphologies were identified in the fiber samples through an extensive scanning electron microscopy study. Extended‐chain PE nanofibrils with diameters of about 60 nm were the major morphological units present in the fiber structure. The nanofibrils were parallel‐packed into individual microfibers with diameters of about 1–30 μm. The microfibers were further aggregated irregularly into fiber aggregates and bundles. In comparison with commercial PE fibers and data reported in the literature, the individual microfibers produced in situ via ethylene extrusion polymerization without posttreatment exhibited a high tensile strength (0.3–1.0 GPa), a low tensile modulus (3.0–7.0 GPa), and a high elongation at break (8.5–20%) at 35 °C. The defects in the alignment of the nanofibrils were believed to be the major reason for the low modulus values. It was also found that a slight tensile drawing could increase the microfiber strength and modulus. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2433–2443, 2003  相似文献   

5.
Structural development of ultra‐high strength polyethylene fibers via hot‐drawing processes of as‐spun gel fibers was investigated by means of transmission electron microscopy. It is found that the shish‐kebabs developed in both the as‐spun and drawn fibers can be transformed continuously into the micro‐fibril structure composed mostly of the shish structure through the hot‐drawing process. The structure transformation involves a drastic decrease in diameter of the kebab plus the shish but almost no change in the shish diameter. This result suggests that the chains in the kebabs are incorporated into the shishs and consumed to extend the longitudinal dimension of the shishs during the drawing process. The proposed new deformation model well explains the relationship between the fiber morphology and their mechanical properties: the tensile strength and modulus of the fibers can be determined by the number of the shish in the fiber and the macroscopic diameter of the fiber, which are apriori determined at the spinning process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1861–1872, 2010  相似文献   

6.
The structure, mechanical properties, and thermomechanical properties of poly(ethylene terephthalate) (PET) fibers obtained by laser-heated drawing were investigated in terms of their dependence on the draw ratio and feed speed and the differences between neck-drawn fibers and flow-drawn fibers. The long period at a draw ratio of 6.0 reached 19.0 nm, notably larger than at lower ratios, whereas the tilting angle of the laminar structure was constant at about 60°, regardless of the draw ratio. A maximum value of 15.0 GPa was attained for the initial modulus, and 1.07 GPa was attained for the tensile strength. A higher tensile strength orientation-induced crystallized fiber at the same initial modulus was obtained from higher molecular weight PET. The relationship between the compliance and molecular orientation of the amorphous phase was studied with a series model of crystalline and amorphous phases. The results revealed that, in the high-draw-ratio fibers, the compliance of the amorphous phase decreased with the draw ratio at a higher rate than indicated by extrapolation to intrinsic values. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 79–90, 2004  相似文献   

7.
Nylon‐6/poly(ethylene terephthalate) (PET) ultra‐multi‐island sea–island conjugated melt‐spun fibers are flow‐drawn at a draw ratio of 174 with heating by CO2 laser irradiation. Continuous PET nanofibers that have a diameter of 39 nm could be obtained from the flow‐drawn fiber with further drawing and removal of the sea component. In addition, the drawn fiber has a strength of 0.54 GPa. This result shows that a PET nanofiber having a strength almost equal to that of a conventional PET fiber can be obtained by the combination of conjugate‐melt‐spinning and laser‐heated flow‐drawing.

  相似文献   


8.
The transverse and longitudinal mechanical properties of aramid fibers like Kevlar? 29 (K29) fibers are strongly linked to their highly oriented structure. Mechanical characterization at the single fiber scale is challenging especially when the diameter is as small as 15 µm. Longitudinal tensile tests on single K29 fibers and single fiber transverse compression test (SFTCT) have been developed. Our approach consists of coupling morphological observations and mechanical experiments with SFTCT analysis by comparing analytical solutions and finite element modeling. New insights on the analysis of the transverse direction response are highlighted. Systematic loading/unloading compression tests enable to experimentally determine a transverse elastic limit. Taking account of the strong anisotropy of the fiber, the transverse mechanical response sheds light on a skin/core architecture. More importantly, results suggest that the skin of the fiber, typically representing a shell of one micrometer in thickness, has a transverse apparent modulus of 0.2 GPa. That is around more than fifteen times lower than the transverse modulus of 3.0 GPa in the core. By comparison, the measured longitudinal modulus is about 84 GPa. The stress distribution in the fiber is explored and the critical areas for damage initiation are discussed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 374–384  相似文献   

9.
The initial stage of fiber structure development in the continuous neck‐drawing of amorphous poly(ethylene terephthalate) fibers was analyzed by in situ wide‐angle X‐ray diffraction, small‐angle X‐ray scattering, and fiber temperature measurements. The time error of the measurements (<600 μs) was obtained by synchrotron X‐ray source and laser irradiation heating. A highly ordered fibrillar‐shaped two‐dimensional (smectic‐like) structure was found to be formed less than 1 ms after necking. By analyzing its (001′) and (002′) diffractions, the length of the structure 60–70 nm were obtained. A three‐dimensionally ordered triclinic crystal began to form with the vanishing of the structure around 1 ms after necking. The amount and size of the crystal were almost saturated within several milliseconds of necking, during which time a mainly exothermic heat of crystallization was also observed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2126–2142, 2008  相似文献   

10.
The mechanical properties and morphology of multiwall carbon nanotube (MWNT)/polypropylene (PP) nanocomposites were studied as a function of nanotube orientation and concentration. Through melt mixing followed by melt drawing, using a twin screw mini‐extruder with a specially designed winding apparatus, the dispersion and orientation of MWNTs was optimized in PP. Tensile tests showed a 32% increase in toughness for a 0.25 wt % MWNT in PP (over pure PP). Moreover, modulus increased by 138% with 0.25 wt % MWNTs. Transmission electron microscopy and scanning electron microscopy demonstrated qualitative nanotube dispersion and orientation. Wide angle X‐ray diffraction was used to study crystal morphology and orientation by calculating the Herman's orientation factor for the composites as function of nanotube loading and orientation. The addition of nanotubes to oriented samples causes the crystalline morphology to shift from α and mesophase to only α phase. Furthermore, the addition of nanotubes (without orientation) was found to cause isotropization of the PP crystal, and drawing was shown to improve crystal orientation through the orientation factor. In addition, differential scanning caloriometry qualitatively revealed little change in overall crystallinity. In conclusion, this work has shown that melt mixing coupled with melt drawing has yielded MWNT/PP composites with a unique combination of strength and toughness suitable for advanced fiber applications, such as smart fibers and high‐performance fabrics. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 864–878, 2006  相似文献   

11.
Fiber‐structure‐development in the poly(ethylene terephthalate) fiber drawing process was investigated with online measurements of wide‐angle and small‐angle X‐ray scattering with both a high‐luminance X‐ray source and a CO2‐laser‐heated drawing system. The intensity profile of the transmitted X‐ray confirmed the location of the neck‐drawing point. The diffraction images had a time resolution of several milliseconds, and this still left much room for improvement. Crystal diffraction appeared in the wide‐angle X‐ray images almost instantaneously about 20 ms after necking, whereas a four‐point small‐angle X‐ray scattering pattern appeared immediately after necking. With the elapse of time after necking, the four‐point scattering pattern changed into a meridional two‐point shape. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1090–1099, 2005  相似文献   

12.
To prevent the loss of fiber strength, ultrahigh‐molecular‐weight polyethylene (UHMWPE) fibers were treated with an ultraviolet radiation technique combined with a corona‐discharge treatment. The physical and chemical changes in the fiber surface were examined with scanning electron microscopy and Fourier transform infrared/attenuated total reflectance. The gel contents of the fibers were measured by a standard device. The mechanical properties of the treated fibers and the interfacial adhesion properties of UHMWPE‐fiber‐reinforced vinyl ester resin composites were investigated with tensile testing. After 20 min or so of ultraviolet radiation based on 6‐kW corona treatment, the T‐peel strength of the treated UHMWPE‐fiber composite was one to two times greater than that of the as‐received UHMWPE‐fiber composite, whereas the tensile strength of the treated UHMWPE fibers was still up to 3.5 GPa. The integrated mechanical properties of the treated UHMWPE fibers were also optimum. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 463–472, 2004  相似文献   

13.
The effects of molecular weight (MW) and MW distribution on the maximum tensile properties of polyethylene (PE), achieved by the uniaxial drawing of solution‐grown crystal (SGC) mats, were studied. The linear‐PE samples used had wide ranges of weight‐average (Mw = 1.5–65 × 105) and number‐average MWs (Mn = 2.0–100 × 104), and MW distribution (Mw/Mn = 2.3–14). The SGC mats of these samples were drawn by a two‐stage draw technique, which consists of a first‐stage solid‐state coextrusion followed by a second‐stage tensile drawing, under controlled conditions. The optimum temperature for the second‐stage draw and the resulting maximum‐achieved total draw ratio (DRt) increased with the MW. For a given PE, both the tensile modulus and strength increased steadily with the DRt and reached constant values that are characteristic for the sample MW. The tensile modulus at a given DRt was not significantly affected by the MW in the lower DRt range (DRt < 50). However, both the maximum achieved tensile modulus (80–225 GPa) and strength (1.0–5.6 GPa), as well as those at higher DRts > 50, were significantly higher for a higher MW. Although the maximum modulus reached 225 ± 5 for Mn ≥ 4 × 105, the maximum strength continued to increase with Mn even for Mn > 4 × 105, showing that strength is more strongly dependent on the Mn, even at higher Mn. Furthermore, it was found that each of the maximum tensile modulus and strength achieved could be expressed by a unique function of the Mn, independently of the wide variations of the sample MW and MW distribution. These results provide an experimental evidence that the Mn has a crucial effect on the tensile properties of extremely drawn and chain‐extended PE fibers, because the structural continuity along the fiber axis increases with the chain length, and hence with the Mn. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 153–161, 2006  相似文献   

14.
We investigated the tensile strength and modulus of ultrahigh‐strength polyethylene (UHSPE) fibers obtained by using the special two‐step‐drawing process of as‐spun fiber (ASFs) which were prepared by the so‐called gel‐spinning method. We have found that the higher the ASF's spinning speed is, the higher the attainable tensile strength σf and modulus E are. For all the fibers drawn from ASFs with various spinning speed except for 120 m/min, we have found a master curve for the inverse of σf which is plotted as a function of T1/4E?1/2, where T is the linear density of the drawn fibers, in consistent with the Griffith theory: a thicker fiber obtained with a lower spinning speed exhibits lower strength, although all the AFSs possess the same value of E. This also suggests that a thicker fiber contains more defects which would lead to the Griffith‐type crack propagation breakage. Moreover, from morphological observation of ASFs under transmission electron microscopy, the ASF obtained at a relatively low spinning speed possesses a heterogeneous cross‐sectional morphology, whereas that obtained at relatively high spinning speed possesses a relatively homogenous morphology. We propose that this morphological evidence may account for the experimental findings of the behavior of the mechanical properties described above. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2639–2652, 2005  相似文献   

15.
The drawing behavior of ultrahigh molecular weight polyethylene fibers in supercritical carbon dioxide (scCO2) is compared to that in air at different temperatures. The temperature substantially influences the drawing properties in air, whereas in scCO2, a constant draw stress and tensile strength are observed. Differential scanning calorimetry shows an apparent development of a hexagonal phase along with a significant increase in the crystallinity of air‐drawn samples with increasing temperature. The existence of this phase is not confirmed by wide‐angle X‐ray scattering, which instead shows that air‐drawn samples crystallize in an internally constrained manner. In contrast, scCO2 allows crystals to grow without constraints through a possible crystal–crystal transformation, increasing the processing temperature to 110 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1375–1383, 2003  相似文献   

16.
This article reports on the fabrication of oriented composite fibers between polylactide (PLA) and multiwall carbon nanotube (MWNT). The fibers were fabricated using a custom‐built melt fiber‐drawing setup. The influence of processing parameters on the final fiber diameter and on the orientation were characterized and optimized. Composite fibers were fabricated at various MWNT contents. Addition of low amounts of MWNT (0.25–1 wt %) to PLA did not have a significant effect on the diameters of the fibers. Observations of the composite morphology under STEM indicated preferential orientation of the MWNTs along the draw direction of the fibers. Increasing amounts of MWNTs was found to increase crystallization kinetics and content. The crystalline content had a direct and profound implication on the mechanical properties with 0.5‐wt % MWNT fibers having the highest crystalline content and also the highest Young's modulus. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 477–484  相似文献   

17.
The effect of molecular weight on fiber structure development during the continuous neck‐drawing of the amorphous poly(ethylene terephthalate) (PET) fiber was investigated by fiber temperature measurements and online WAXD analysis. The fiber temperature was also simulated using the energy balance equation. The simulated temperature increased differently with molecular weight immediately after the neck point, while the measured temperature showed no difference. The difference in the simulated temperature was caused by the potential energy increase with increasing molecular weight, which would result in a retardation effect in the initial stage of fiber structure development. Online X‐ray measurements were carried out with a time resolution of 0.5 ± 0.06 ms. A two‐dimensionally ordered mesophase was formed within 1 ms after the neck point and developed into a microfibrillar structure. The time required for the disappearance of the two‐dimensionally ordered structure increased with increasing molecular weight, leading to a retardation effect. No molecular weight dependence was observed in the rate of transformation from the two‐dimensionally ordered structure to the PET crystal. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1653–1665, 2009  相似文献   

18.
Response surface analysis was used in optimizing spinning and drawing conditions for the production of a high‐modulus, high‐strength, thick polypropylene (PP) monofilament. Rotatable octagonal central composite design was adopted with two independent variables (take‐up velocity and draw ratio), and variations in the diameter, tensile modulus, and tenacity of the PP monofilament were observed. Quadratic response surface functions described the variations in those properties with quite high correlation coefficients. Canonical analysis combined with contour plots revealed the variation sensitivity: the diameter varied more markedly with the take‐up velocity, and the tensile modulus varied somewhat equally with the two variables, whereas the tenacity varied more markedly with the draw ratio. From such contour plots, the optimum processing conditions for desired properties were predicted without intensive structural analysis. Case studies showed that under the suggested processing conditions, the PP monofilament fulfilled the property requirements, such as a tensile modulus of 10.4 GPa and a tenacity of 672 MPa with a diameter still above 400 μm. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1175–1182, 2003  相似文献   

19.
Fourier transform Raman spectra were measured for poly‐p‐phenylenebenzobisoxazole (PBO) fiber subjected to a tensile stress, and the Raman shift factor (the frequency shift caused by 1 GPa tensile stress) depended strongly on the sample‐preparation condition. To clarify the reasons of this dependency, a mechanical series parallel model was adopted that could successfully and quantitatively explain the observed Raman shift factors and gave a concreate heterogeneous stress distribution in the PBO fibers. As a result, a mechanical series model was reasonable for PBO fiber. Broadening of Raman bands, which was observed when the PBO fiber was tensioned, could also be interpreted on the basis of an idea of heterogeneous stress distribution. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1281–1287, 2002  相似文献   

20.
Isotactic polypropylene (i‐PP) can crystallize in different crystal modifications. In this article, the effect of sepiolite (one‐dimensional) and carbon black (three‐dimensional) fillers on the solid‐state drawability of i‐PP is discussed. The cross‐hatched structure of thermodynamically most stable α‐crystal phase in i‐PP does not allow for perfect chain alignment during solid‐state drawing. The β‐phase i‐PP, obtained by addition of specific nucleating agents, crystallizes in a non‐cross‐hatched spherulitic structure and allows more easy drawing. Depending on the filler type, β–α transformation takes place at different draw ratios, as was observed by in situ wide‐angle X‐ray diffraction measurements. It was observed that β‐nucleated i‐PP has a lower yield stress and can be drawn further than i‐PP crystallized in the α‐crystal phase. If added in the right amount, both carbon black and sepiolite have a reinforcing effect on PP tapes. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1071–1082  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号