首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 622 毫秒
1.
We have examined several combinations of solvents with the aim of optimizing the ionization conditions for molecular diagnosis of malignant tumours by PESI-MS. Although the best conditions may depend on the actual species in the sample, the optimal conditions for renal cell carcinoma (RCC) were achieved by using alcohols. PESI-MS successfully delineated the differential expression of phospholipids (PCs) and triacylglycerols (TAGs) in noncancerous and RCC tissues by using these solvent systems. This study paves the way for the application of PESI-MS in medical samples.  相似文献   

2.
3.
Although there are a lot of well established methods for monitoring enzyme-catalyzed reactions, most of them are based on changes in spectroscopic properties during the conversion of substrates to products. However, reactions without optical changes are common, which are inapplicable to these spectroscopic methods. As an alternative technique for enzymologic research, mass spectrometry (MS) is favored due to its specificity, sensitivity, and the ability to obtain stoichiometric information. In this work, probe electrospray ionization (PESI) source coupled with a time of flight mass spectrometer was employed to monitor some typical protease-catalyzed reactions, including pepsinolysis and trypsinolysis of cytochrome c in real time. Due to the high electrical conductivity of each reaction system, corona discharges are likely to occur, which would decrease intensities of mass spectrometric signals. An ultra-fine sampling probe and an auxiliary vapor spray were adopted to prevent corona discharges. Experimental results from peptic and tryptic digestions of cytochrome c showed different and characteristic catalytic pathways. With the data presented in this study, PESI-MS can be considered as a potential tool for real-time monitoring of enzymatic reactions because of its simplicity in instrumental configuration, wide applicability under harsh conditions, and flexibility in combination with other techniques.  相似文献   

4.
In recent years, Raman spectroscopy has shown substantive promise in diagnosing bladder cancer, especially due to its exquisite molecular specificity. The ability to reduce false detection rates in comparison to existing diagnostic tools such as photodynamic diagnosis makes Raman spectroscopy particularly attractive as a complementary diagnostic tool for real-time guidance of transurethral resection of bladder tumor (TURBT). Nevertheless, the state-of-the-art high-volume Raman spectroscopic probes have not reached the expected levels of specificity thereby impeding their clinical translation. To address this issue, we propose the use of a confocal Raman probe for bladder cancer diagnosis that can boost the specificity of the diagnostic algorithm based on its suppression of the out-of-focus non-analyte-specific signals emanating from the neighboring normal tissue. In this article, we engineer and apply such a probe, having depth of field of approximately 280?μm, for Raman spectral acquisition from ex vivo normal and cancerous TURBT samples. Using this clinical dataset, a diagnostic algorithm based on principal component analysis and logistic regression is developed. We demonstrate that this approach results in comparable sensitivity but significantly higher specificity in relation to high-volume Raman spectral data. The application of only two principal components is sufficient for the discrimination of the samples underlining the robustness of the algorithm. Further, no discordance between replicate spectra is observed emphasizing the reproducible nature of the current diagnostic assessment. The high levels of sensitivity and specificity achieved in this proof-of-concept study opens substantive avenues for application of a confocal Raman probe during endoscopic procedures related to diagnosis and treatment of bladder cancer.
Figure
Artistic depiction of the working principle of the confocal Raman spectroscopic sensor for urinary bladder cancer diagnosis  相似文献   

5.
We have investigated the application of near-infrared spectroscopy for detection of human primary pancreatic and colorectal cancers. Spectra from cancerous and normal tissue were collected from a total of 37 surgically resected pancreatic and colorectal patient tissue specimens using a fibre-optic probe. Major spectral differences were observed in the CH-stretching first (6,000–5,400 cm−1) and second overtone (9,000–7,900 cm−1) regions. By use of artificial neural networks, linear discriminant analysis, and cluster analysis as pattern-recognition methods the spectra were classified into cancerous and normal tissue groups with accuracy up to 89%. We also explored differences between the spectra obtained from colorectal and pancreatic tissue. Spectral data from cancerous and normal tissue were classified organ-specifically into four groups with accuracy between 80 and 83%. Our results indicate that CH-overtone regions, besides serving as diagnostic markers for NIR spectroscopic diagnosis of primary human pancreas and colorectal cancers, are also useful for elucidating differences between the spectra obtained from colorectal and pancreatic cancerous tissue.  相似文献   

6.
Activatable (turn‐on) probes that permit the rapid, sensitive, selective, and accurate identification of cancer‐associated biomarkers can help drive advances in cancer research. Herein, a NAD(P)H:quinone oxidoreductase‐1 (NQO1)‐specific chemiluminescent probe 1 is reported that allows the differentiation between cancer subtypes. Probe 1 incorporates an NQO1‐specific trimethyl‐locked quinone trigger moiety covalently tethered to a phenoxy‐dioxetane moiety through a para‐aminobenzyl alcohol linker. Bio‐reduction of the quinone to the corresponding hydroquinone results in a chemiluminescent signal. As inferred from a combination of in vitro cell culture analyses and in vivo mice studies, the probe is safe, cell permeable, and capable of producing a “turn‐on” luminescence response in an NQO1‐positive A549 lung cancer model. On this basis, probe 1 can be used to identify cancerous cells and tissues characterized by elevated NQO1 levels.  相似文献   

7.
Probe electrospray ionization (PESI) is a recently developed ESI-based ionization technique which generates electrospray from the tip of a solid needle. In this study, we have applied PESI interfaced with a time of flight mass spectrometer (TOF-MS) for direct profiling of phytochemicals in a section of a tulip bulb in different regions, including basal plate, outer and inner rims of scale, flower bud and foliage leaves. Different parts of tulip petals and leaves have also been investigated. Carbohydrates, amino acids and other phytochemicals were detected. A series of in vivo PESI-MS experiments were carried out on the second outermost scales of four living tulip bulbs to monitoring the change of carbohydrate content during the first week of initial growth. The breakdown of carbohydrates was observed which was in accordance with previous reports achieved by other techniques. This study has indicated that PESI-MS can be used for rapid and direct analysis of phytochemicals in living biological systems with advantages of low sample consumption and little sample preparation. Therefore, PESI-MS can be a new choice for direct analysis/profiling of bioactive compounds or monitoring metabolic changes in living biological systems.  相似文献   

8.
BackgroundIt is estimated that there are 338,000 new renal-cell carcinoma releases every year in the world. Renal cell carcinoma (RCC) is a heterogeneous tumor, of which more than 70% is clear cell renal cell carcinoma (ccRCC). It is estimated that about 30% of new renal-cell carcinoma patients have metastases at the time of diagnosis. However, the pathogenesis of renal clear cell carcinoma has not been elucidated. Therefore, it is necessary to further study the pathogenesis of ccRCC.MethodsTwo expression profiling datasets (GSE68417, GSE71963) were downloaded from the GEO database. Differentially expressed genes (DEGs) between ccRCC and normal tissue samples were identified by GEO2R. Functional enrichment analysis was made by the DAVID tool. Protein-protein interaction (PPI) network was constructed. The hub genes were excavated. The clustering analysis of expression level of hub genes was performed by UCSC (University of California Santa Cruz) Xena database. The hub gene on overall survival rate (OS) in patients with ccRCC was performed by Kaplan-Meier Plotter. Finally, we used the ccRCC renal tissue samples to verify the hub genes.Results1182 common DEGs between the two datasets were identified. The results of GO and KEGG analysis revealed that variations in were predominantly enriched in intracellular signaling cascade, oxidation reduction, intrinsic to membrane, integral to membrane, nucleoside binding, purine nucleoside binding, pathways in cancer, focal adhesion, cell adhesion molecules. 10 hub genes ITGAX, CD86, LY86, TLR2, TYROBP, FCGR2A, FCGR2B, PTPRC, ITGB2, ITGAM were identified. FCGR2B and TYROBP were negatively correlated with the overall survival rate in patients with ccRCC (P < 0.05). RT-qPCR analysis showed that the relative expression levels of CD86, FCGR2A, FCGR2B, TYROBP, LY86, and TLR2 were significantly higher in ccRCC samples, compared with the adjacent renal tissue groups.ConclusionsIn summary, bioinformatics technology could be a useful tool to predict the progression of ccRCC. In addition, there are DEGs between ccRCC tumor tissue and normal renal tissue, and these DEGs might be considered as biomarkers for ccRCC.  相似文献   

9.
Nitroreductases belong to a member of flavin-containing enzymes that can reduce nitroaromatic compounds to amino derivatives with NADH as an electron donor. NTR activity is known to be elevated in the cancerous environment and is considered an advantageous target in therapeutic prodrugs for the treatment of cancer. Here, we developed a ratiometric fluorescent molecule for observing NTR activity in living cells. This can provide a selective and sensitive response to NTR with a distinct increase in fluorescence ratio (FI530/FI630) as well as color changes. We also found a significant increase in NTR activity in cervical cancer HeLa and lung cancer A549 cells compared to non-cancerous NIH3T3. We proposed that this new ratiometric fluorescent molecule could potentially be used as a NTR-sensitive molecular probe in the field of cancer diagnosis and treatment development related to NTR activity.  相似文献   

10.
The applications of spectroscopic methods in cancer detection open new possibilities in early stage diagnostics. Raman spectroscopy and Raman imaging represent novel and rapidly developing tools in cancer diagnosis. In the study described in this paper Raman spectroscopy has been employed to examine noncancerous and cancerous human breast tissues of the same patient. The most significant differences between noncancerous and cancerous tissues were found in regions characteristic for the vibrations of carotenoids, lipids and proteins. Particular attention was paid to the role played by unsaturated fatty acids in the differentiation between the noncancerous and the cancerous tissues. Comparison of Raman spectra of the noncancerous and the cancerous tissues with the spectra of oleic, linoleic, α-linolenic, γ-linolenic, docosahexaenoic and eicosapentaenoic acids has been presented. The role of sample preparation in the determination of cancer markers is also discussed in this study.  相似文献   

11.
Fluorescent nanoparticles (FNs) with unique optical properties may be useful as biosensors in living cancer cell imaging and cancer targeting. In this study, anti-EGFR antibody conjugated fluorescent nanoparticles (FNs) (anti-EGFR antibody conjugated FNs) probe was used to detect breast cancer cells. FNs with excellent character such as non-toxicity and photostability were first synthesized with a simple, cost-effective and environmentally friendly modified Stőber synthesis method, and then successfully modified with anti-EGFR antibody. This kind of fluorescence probe based on the anti-EGFR antibody conjugated FNs has been used to detect breast cancer cells with fluorescence microscopy imaging technology. The experimental results demonstrate that the anti-EGFR antibody conjugated FNs can effectively recognize breast cancer cells and exhibited good sensitivity and exceptional photostability, which would provide a novel way for the diagnosis and curative effect observation of breast cancer cells and offer a new method in detecting EGFR.  相似文献   

12.
To evaluate the new, bio-optical method of light-induced autofluorescence spectroscopy for the endoscopic in-vivo diagnosis of (pre)-cancerous lesions of the colorectum, 311 endogenous fluorescence spectra were obtained from normal, adenomatous and cancerous colorectal tissue in 11 patients with cancer, six patients with familial adenomatous polyposis, and six patients with multiple adenomatous polyps. A light source delivered either white or violet-blue light for excitation of tissue autofluorescence via a flexible endoscope. Endogenous fluorescence spectra emitted by the tissue were picked up with a fiberoptic probe and analysed with a spectrograph. Biopsies were taken for definitive classification of the spectra. Rectal cancer (n=11) as well as adenomas with severe dysplasia (n=19) showed specific differences between the emitted fluorescence spectra as compared with normal mucosa and hyperplastic polyps. Having applied a mathematical algorithm to the spectra, a sensitivity of 96% and a specificity of 93% were obtained for the diagnosis of rectal cancer. The equivalent values for the diagnosis of dysplastic ademomas were 98 and 89%, respectively. Light-induced autofluorescence spectroscopy is a new and promising bio-optical procedure for the endoscopic in-vivo diagnosis of colorectal cancer and dysplasia.  相似文献   

13.
14.
ObjectiveTo explore the disturbed molecular functions and pathways in clear cell renal cell carcinoma (ccRCC) using Gibbs sampling.MethodsGene expression data of ccRCC samples and adjacent non-tumor renal tissues were recruited from public available database. Then, molecular functions of expression changed genes in ccRCC were classed to Gene Ontology (GO) project, and these molecular functions were converted into Markov chains. Markov chain Monte Carlo (MCMC) algorithm was implemented to perform posterior inference and identify probability distributions of molecular functions in Gibbs sampling. Differentially expressed molecular functions were selected under posterior value more than 0.95, and genes with the appeared times in differentially expressed molecular functions ≥5 were defined as pivotal genes. Functional analysis was employed to explore the pathways of pivotal genes and their strongly co-regulated genes.ResultsIn this work, we obtained 396 molecular functions, and 13 of them were differentially expressed. Oxidoreductase activity showed the highest posterior value. Gene composition analysis identified 79 pivotal genes, and survival analysis indicated that these pivotal genes could be used as a strong independent predictor of poor prognosis in patients with ccRCC. Pathway analysis identified one pivotal pathway − oxidative phosphorylation.ConclusionsWe identified the differentially expressed molecular functions and pivotal pathway in ccRCC using Gibbs sampling. The results could be considered as potential signatures for early detection and therapy of ccRCC.  相似文献   

15.
We perform mathematical modeling with the fast Padé transform (FPT) according to magnetic resonance (MR)-time signals as encoded in vitro from normal glandular and stromal prostate tissue and from prostate cancer. This is one of the most demanding signal processing problems in MR spectroscopy due to the abundance of diagnostically important multiplets (notably doublet and triplet resonances). The FPT provided exact reconstruction at short acquisition times (i.e. using only a fraction of the full signal length) of all the input spectral parameters for the data corresponding to prostate cancer and to normal glandular as well as stromal prostate tissue. This was achieved without any fitting or numerical integration of peak areas. The converged parametric results remained stable at longer partial signal lengths, including the case using the full signal length. The Padé absorption component spectra yielded unequivocal resolution of all the extracted physical resonances, including multiplet resonances and closely overlapping peaks of different metabolites. The capacity of the FPT to resolve and precisely quantify the physical resonances as encountered in normal tissue from two distinct regions of the prostate, as well as in prostate cancer is demonstrated. The spectra from prostate tissues are dense, which suggests that there is a rich array of metabolic information to be gleaned. The FPT is hereby shown to be optimally suited to retrieve that information. The FPT reliably yields the metabolite concentrations that could be of critical importance for distinguishing non-malignant from cancerous prostate tissue. Padé-optimized MRS could clearly aid prostate cancer diagnostics. This line of investigation will continue with experimentally encoded data from normal, hypertrophic and cancerous prostate tissue, in vitro and in vivo. We anticipate that Padé-optimized MRS will improve the specificity as well as sensitivity of MR-based modalities with respect to prostate cancer. This could have an important impact upon timely and accurate diagnosis of this malignancy, as well as aiding decision-making for therapeutic dilemmas.  相似文献   

16.
Background: Studies have shown that long non-coding RNAs (lncRNAs) play essential roles in tumor progression and can affect the response to radiotherapy, including in clear cell renal cell carcinoma (ccRCC). LINC02532 has been found to be upregulated in ccRCC. However, not much is known about this lncRNA. Hence, this study aimed to investigate the role of LINC02532 in ccRCC, especially in terms of radioresistance. Methods: Quantitative real-time PCR was used to detect the expression of LINC02532, miR-654-5p, and YY1 in ccRCC cells. Protein levels of YY1, cleaved PARP, and cleaved-Caspase-3 were detected by Western blotting. Cell survival fractions, viability, and apoptosis were determined by clonogenic survival assays, CCK-8 assays, and flow cytometry, respectively. The interplay among LINC02532, miR-654-5p, and YY1 was detected by chromatin immunoprecipitation and dual-luciferase reporter assays. In addition, in vivo xenograft models were established to investigate the effect of LINC02532 on ccRCC radioresistance in 10 nude mice. Results: LINC02532 was highly expressed in ccRCC cells and was upregulated in the cells after irradiation. Moreover, LINC02532 knockdown enhanced cell radiosensitivity both in vitro and in vivo. Furthermore, YY1 activated LINC02532 in ccRCC cells, and LINC02532 acted as a competing endogenous RNA that sponged miR-654-5p to regulate YY1 expression. Rescue experiments indicated that miR-654-5p overexpression or YY1 inhibition recovered ccRCC cell functions that had been previously impaired by LINC02532 overexpression. Conclusions: Our results revealed a positive feedback loop of LINC02532/miR-654-5p/YY1 in regulating the radiosensitivity of ccRCC, suggesting that LINC02532 might be a potential target for ccRCC radiotherapy. This study could serve as a foundation for further research on the role of LINC02532 in ccRCC and other cancers.  相似文献   

17.
由于肿瘤内部细胞远离血管, 其氧气消耗量远远超出血液供应量, 因此容易导致肿瘤缺氧. 肿瘤缺氧会引发肿瘤扩散加速、 诱导某些基因过表达及产生药物抗药性等问题. 基于此, 发展性能优异的缺氧响应荧光探针对肿瘤的诊断和治疗具有重要意义. 本文对缺氧响应荧光探针在成像及治疗方面的应用进展进行了综合评述, 介绍了硝基、 偶氮键和醌3种常用的缺氧响应基团, 并探讨了它们在缺氧微环境下的识别机理; 介绍了缺氧响应荧光探针的构建及其在生物成像方面的最新研究成果; 总结了缺氧响应荧光探针在基因治疗、 光动力学治疗、 化学治疗及协同治疗方面的研究进展; 展望了缺氧响应荧光探针在临床诊断和治疗方面的应用前景.  相似文献   

18.
A convenient, sensitive, and label-free method to determine the DNA methylation status of CpG sites of plasmid and human colon cancer cell has been developed. The system relies on highly selective single base extension reaction and significant optical amplification of cationic conjugated polyelectrolytes (CCP-1). The higher fluorescence resonance energy transfer efficiency between CCP-1 and fluorescein-labeled dGTP (dGTP-Fl) is correlated to the incorporation of dGTP-Fl into the probe DNA by single base extension reaction when the target/probe pair is complementary at the methylation site. As low as 1% methylation status can be determined by this new assay method. Because of the optical amplification property of CCP-1, the method exhibited high sensitivity with a concentration of analyte DNA at the picomolar level. The CCP-1 can form a complex with negatively charged DNA through electrostatic interactions, avoiding labeling the DNA target and probe by covalent linking. The isolation steps employed in other typical assays were avoided to simplify operations and increase repeatability. These features make the system promising for future use for early cancer diagnosis.  相似文献   

19.
Mass spectrometry imaging is an informative approach for the comprehensive analysis of multiple components inside biological specimens. We used novel tapping‐mode scanning probe electrospray ionization mass spectrometry method to visualize cancer‐related chemical components in the mouse pancreas tissue section at a sampling pitch of 100 µm. Positive ion mode measurements from m/z 100 to 1500 resulted in the visualization of multiple components that are tentatively assigned as polyamines, lipids and proteins. Their signal intensities inside the cancerous and the non‐cancerous regions were found to be significantly different by the two‐sample t‐test. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
杨芹  石先哲  单圆鸿  窦阿波  许国旺 《色谱》2012,30(9):876-882
针对甘油三酯(TAG)类化合物的复杂性,建立了分析小鼠血清中TAG类化合物的方法。采用经典的氯仿-甲醇溶剂体系对血中的TAG类化合物进行提取。脂质提取物经Varian ChromSpher 5 Lipids柱分离,在0.75 mL/min的流速下以乙腈-正己烷(1:99, v/v)为流动相进行等度洗脱,采用大气压化学电离源正离子模式电离,质谱增强型全扫描、增强型子离子扫描和中性丢失扫描模式检测。根据银离子色谱对双键的保留规律以及质谱所给出的碎片离子信息,对血清中TAG类化合物进行了结构鉴定。结果表明采用该方法可以从小鼠血清中鉴定到66个TAG类化合物以及5个胆固醇酯。该方法简单,重现性好,可通用于其他样品中TAG类化合物的检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号