首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A continuous cyclic voltammetric study of methyldopa at gold micro electrode was carried out. The drug in phosphate buffer (pH 2.0) is adsorpted at 400 mV, giving rise to change in the current of well-defined oxidation peak of gold in the flow injection system. The proposed detection method has some of advantages, the greatest one of which are as follows: first, it is no more necessary to remove oxygen from the analyte solution and second, this is a very fast and appropriate technique for determination of the drug compound in a wide variety of chromatographic analysis methods. Signal-to-noise ratio has significantly increased by application of discrete Fast Fourier transform (FFT) method, background subtraction and two-dimensional integration of the electrode response over a selected potential range and time window. Also in this work some parameters such as sweep rate, eluent pH, and accumulation time and potential were optimized. The linear concentration range was of 1.0×10-7—1.0×10-11 mol•L-1 (r=0.9975) with a limit of detection and quantitation 0.004 nmol•L-1 and 0.03 nmol•L-1, respectively. The method has the requisite accuracy, sensitivity, precision and selectivity to assay methyldopa in tablets. The influences of pH of eluent, accumulation potential, sweep rate, and accumulation time on the determination of the methyldopa were considered.  相似文献   

2.
We report a rapid and simple method for sensing estradiol by electro‐oxidation on a multi‐walled carbon nanotube (MWCNT) and gold nanoparticle (AuNP) modified glassy carbon electrode (GCE). Compared with a bare GCE, AuNP/GCE and MWCNT/GCE, the composite modified GCE shows an enhanced response to estradiol in 0.1 M phosphate buffer solution. Experimental parameters, including pH and accumulation time for estradiol determination were optimised at AuNP/MWCNT/GCE. A pH of 7.0 was found to be optimum pH with an accumulation time of 5 minutes. Estradiol was determined by linear sweep voltammetry over a dynamic range up to 20 %mol L?1 and the limit of detection was estimated to be 7.0×10?8 mol L?1. The sensor was successfully applied to estradiol determination in tap water and waste water.  相似文献   

3.
A highly sensitive and selective catalytic adsorptive cathodic striping procedure for the determination of trace germanium is presented. The method is based on adsorptive accumulation of the Ge(IV)‐gallic acid (GA) complex onto a hanging mercury drop electrode, followed by reduction of the adsorbed species. The reduction current is enhanced catalytically by addition of vanadium(IV)‐EDTA. The optimal experimental conditions include the use of 0.03 mol/L HClO4 (pH1.6), 6.0×10?3 mol/L GA, 3.0×10?3 mol/L V(IV), 4.0×10?3 mol/L EDTA, an accumulation potential of ?0.10 V(vs. Ag/AgCl), an accumulation time of 120 s and a differential pulse potential scan mode. The peak current is proportional to the concentration of Ge(IV) over the range of 3.0×10?11 to 1.0×10?8 mol/L and the detection limit is 2×10?11 mol/L for a 120 s adsorption time. The relative standard deviation at 5.0×10?10 mol/L level is 3.1%. No serious interferences were found. The method was applied to the determination of germanium in ore, mineral water and vegetable samples with satisfactory results.  相似文献   

4.
A new method for the determination of trace copper was described. A multiwalled carbon nanotube modified carbon paste electrode was prepared and the adsorptive voltammetric behavior of copper‐alizarin red S (ARS) complex at the modified electrode was investigated. By use of the second‐order derivative linear sweep voltammetry, it was found that in 0.04 mol/L acetate buffer solution (pH 4.2) containing 4×10?6 mol/L ARS, when accumulation potential is 0 mV, accumulation time is 60 s and scan rate is 100 mV/s, the complex can be adsorbed on the surface of the electrode, yielding one sensitive reduction peak at ?172 mV (vs. SCE). The peak current of the complex is proportional to the concentration of Cu(II) in the range of 2.0×10?11–4.0×10?7 mol L?1 with a detection limit (S/N=3) of 8.0×10?12 mol/L (4 min accumulation). The proposed method was successfully applied to the determination of copper in biological samples with satisfactory results, the recoveries were found to be 96%–102%.  相似文献   

5.
In this paper, a silver doped poly(L ‐valine) (Ag‐PLV) modified glassy carbon electrode (GCE) was fabricated through electrochemical immobilization and was used to electrochemically detect uric acid (UA), dopamine (DA) and ascorbic acid (AA) by linear sweep voltammetry. In pH 4.0 PBS, at a scan rate of 100 mV/s, the modified electrode gave three separated oxidation peaks at 591 mV, 399 mV and 161 mV for UA, DA and AA, respectively. The peak potential differences were 238 mV and 192 mV. The electrochemical behaviors of them at the modified electrode were explored in detail with cyclic voltammetry. Under the optimum conditions, the linear ranges were 3.0×10?7 to 1.0×10?5 M for UA, 5.0×10?7 to 1.0×10?5 M for DA and 1.0×10?5 to 1.0×10?3 M for AA, respectively. The method was successfully applied for simultaneous determination of UA, DA and AA in human urine samples.  相似文献   

6.
The fabrication of cobalt/polyaniline nanocomposite was performed using a simple chemical method. It was characterized by using TEM and FTIR techniques. The nanocomposite was applied as a modifier in a carbon paste electrode for selective determination of penicillamine. Penicillamine reacts with emeraldine polyaniline by using 1,4, Michael addition reaction. It can decrease the voltammetric peak current of emeraldine polyaniline. The effects of pH and potential sweep rate on the response of the electrode were investigated. Differential pulse voltammetry was applied for quantitative determination. Dynamic linear ranges were obtained in the ranges of 1.0×10?8–1.0×10?7 mol L?1 and 1.0×10?9–1.0×10?8 mol L?1.  相似文献   

7.
A sensitive electrochemical method was developed for the determination of bisphenol A (BPA) at a glassy carbon electrode (GCE) modified with a multiwalled carbon nanotubes (MWCNTs)‐gold nanoparticles (GNPs) hybrid film, which was prepared based on the electrostatic interaction between positively charged cetyltrimethylammonium bromide (CTAB) and negatively charged MWCNTs and GNPs. The MWCNT‐GNPs/GCE exhibited an enhanced electroactivity for BPA oxidation versus unmodified GCE and MWCNTs/GCE. The experimental parameters, including the amounts of modified MWCNTs and GNPs, the pH of the supporting electrolyte, scan rate and accumulation time, were examined and optimized. Under the optimal conditions, the differential pulse voltammetric anodic peak current of BPA was linear with the BPA concentration from 2.0×10?8 to 2×10?5 mol L?1, with a limit of detection of 7.5 nmol L?1. The proposed procedure was applied to determine BPA leached from real plastic samples with satisfactory results.  相似文献   

8.
《Analytical letters》2012,45(1):176-185
A poly(methyl red) film-modified glassy carbon electrode was fabricated and the oxidation behavior of tryptophan at the modified electrode was investigated by cyclic and linear sweep voltammetry. The oxidation peak current of tryptophan at the modified electrode increased significantly, and the oxidation process was irreversible and adsorption-controlled. An analytical method was developed for the determination of tryptophan in a phosphate buffer solution at pH 3.5. The anodic peak current varied linearly with a tryptophan concentration in the range 1.0 × 10?7 to 1.0 × 10?4 mol/L with a limit of detection of 4.0 × 10?8 mol/L. The proposed method was successfully applied to determine tryptophan in composite amino acid injections.  相似文献   

9.
《Analytical letters》2012,45(6):1143-1158
Abstract

A sensitive and reliable stripping voltammetry method was developed to determine the presence of Ceftiofur antibiotic drug. This method is based on the adsorptive accumulation of the drug at a hanging mercury drop electrode and then the initiation of a negative sweep that yielded well‐defined cathodic peaks at ?0.65 V (1 C) and ?1.00 V (2 C) vs. Ag/AgCl reference electrode. To achieve high sensitivity, various experimental and instrumental variables were investigated such as supporting electrolyte, pH, accumulation time and potential, drug concentration, scan rate, convection rate, and working electrode area. The monitored adsorptive current of peak 1 C was directly proportional to the concentration of Ceftiofur; it shows a linear response in the range from 0.50×10?8 to 8.00×10?8 mol L?1 (correlation coefficient=0.998); and the limit of detection is 6.00×10?10 mol L?1 at an accumulation time of 300 s. The applicability of this approach was illustrated by the determination of Ceftiofur in pharmaceutical preparations and bovine serum.  相似文献   

10.
Introduction Overall exposure to lead is of public health concern because of several hazardous effects that may occur to human beings. Lead poisoning may provoke irritability, anorexia, malaise and headache. Intoxication progress may lead to attacks of abdominal pain until coma and death.1 The determination of trace lead in variety of en-vironmental samples is of great importance since lead is recognized as a cumulative poison to animals and hu-mans. There is a constant demand for improved an…  相似文献   

11.
This work was designed to develop an electrochemical sensor based on molecular imprinted polyaniline membranes onto reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) modified glassy carbon (GC) electrode for dapsone (DDS) determination. The prepared RGO/AuNPs/PANI‐MIPs nanocomposite was characterized by Ultra‐Violet‐Visible (UV‐Vis), Fourier transform infrared spectroscopy (FT‐IR) and scanning electronic microscopy (SEM) images. The feature of the imprinted electrode was evaluated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and impedance spectroscopy (IS). Throughout this study several analytical parameters, such as incubation time, pH value, concentration of monomer/template molecules and electro‐polymerization cycles were investigated. Under the optimized conditions, the experimental results showed best analytical performances for DDS detection with a sensitivity of 0.188 Ω/mol L?1, a linear range from 1.0×10?7 M to 1.0×10?3 M and a detection limit of 6.8×10?7 M. The bioanalytical sensor was applied to the determination of dapsone in real samples with high selectivity and recovery.  相似文献   

12.
A carbon paste electrode modified with chelating resin (ammino-isopropylmercaptan-type cross-linked chelating resins) for the voltammetric determination of gold(III) was characterized by cyclic voltammetry. The gold(III) ion is accumulated on the surface of the modified electrode only by the chelating effect of the modifier in the carbon paste, without application of a potential. After exchange of the medium the accumulated amount of gold(III) is determined by voltammetry in a blank electrolyte solution. The response depends on both the concentration of gold and the accumulation time. For a 5-min preconcentration time, a linear calibration graph was obtained in the range 3 × 10?8-1 × 10?6 M and the detection limit was about 1 × 10?8 M. A combination of chemical and electrochemical renewal allows the use of a single modified electrode in multiple analytical determinations over several days. For ten preconcentration—determination—renewal cycles [2 × 10?7 M Au(III)], the response could be reproduced with 4.7% relative standard deviation. Many parameters such as the composition of the paste and pH influence the response of the measurement. Many other metal ions have no or little effect on the determination of gold. The procedure was applied to the determination of gold in minerals, copper and anode mud, with good results.  相似文献   

13.
《Analytical letters》2012,45(9):1907-1915
Abstract

The electrochemical behavior of citalopram was studied by square‐wave and square‐wave adsorptive‐stripping voltammetry (SWAdSV). Citalopram can be reduced and accumulated at a mercury drop electrode, with a maximum peak current intensity being obtained at a potential of approximately ?1.25 V vs. AgCl/Ag, in an aqueous electrolyte solution of pH 12. A SWAdSV method has been developed for the determination of citalopram in pharmaceutical preparations. The method shows a linear range between 1.0×10?7 and 2.0×10?6 mol L?1 with a limit of detection of 5×10?8 mol L?1 for an accumulation time of 30 s. The precision of the method was evaluated by assessing the repeatability and intermediate precision, achieving good relative standard deviations in all cases (≤2.3%). The proposed method was applied to the determination of citalopram in five pharmaceutical products and the results obtained are in good agreement with the labeled values.  相似文献   

14.
《Electroanalysis》2006,18(11):1075-1080
The voltammetric behavior of uric acid (UA) has been studied at a multiwalled carbon nanotube‐ionic liquid (i.e., 1‐butyl‐3‐methylimidazolium hexafluorophosphate, BMIMPF6) paste coated glassy carbon electrode (MWNTs‐BMIMPF6/GC). It is found that UA can effectively accumulate at this electrode and cause a sensitive anodic peak at about 0.49 V (vs. SCE) in pH 4.0 phosphate buffer solutions. Experimental parameters influencing the response of the electrode, such as solution pH and accumulation time, are optimized for uric acid determination. Under the optimum conditions, the anodic peak current is linear to UA concentration in the range of 1.0×10?8 M to 1.0×10?6 M and 2.0×10?6 M to 2.0×10?5 M. The detection limit is 5.0×10?9 M for 180 s accumulation on open circuit. The electrode can be regenerated by successively cycling in a blank solution for about 3 min and exhibits good reproducibility. A 1.0×10?6 M UA solution is measured for eight times using the same electrode regenerated after every determination, and the relative standard deviation (RSD) of the peak current is 3.2%. As for different electrodes fabricated by the same way the RSD (i.e., the electrode to electrode deviation) is 4.2%(n=9). This method has been applied to the determination of UA in human urine samples, and the recoveries are 99%–100.6%. In addition, comparison is made between MWNTs‐BMIMPF6/GC and MWNTs/GC. Results show that the MWNTs‐BMIMPF6/GC exhibits higher sensitivity, selectivity and ratio of peak current to background current.  相似文献   

15.
《Analytical letters》2012,45(7):1208-1224
Abstract

This paper describes development of a new analysis system for determination of lorazepam by a novel square wave voltammetry method to perform a very sensitive method. The method used for determination of lorazepam involves measuring the changes in admittance voltammogram of a gold ultramicroelectrode (in 0.05 M H3PO4 solution) caused by adsorption of the lorazepam on the electrode surface. Variation of admittance in the detection process is created by inhibition of oxidation reaction of the electrode surface, by adsorbed lorazepam. Furthermore, signal-to-noise ratio is significantly increased by application of discrete fast Fourier transform (FFT) method, background subtraction, and two-dimensional integration of the electrode response over a selected potential range and time window. Also in this work, some parameters such as SW frequency, eluent pH, and accumulation time were optimized. Calibration plots are given for solutions containing 10?6–10?11 M of lorazepam. The detection limit is calculated to be 6.0 × 10?12 M (~ 2 pg/ml). The relative standard deviation at concentration 3.0 × 10?8 M is 6.1% for 5 reported measurements.  相似文献   

16.
《Electroanalysis》2002,14(24):1691-1698
Three different recently synthesized aza‐thioether crowns containing a 1,10‐phenanthroline sub‐unit (L1–L3) and a corresponding acyclic ligand (L4) were studied to characterize their abilities as silver ion ionophores in PVC‐membrane electrodes. Novel conventional silver‐selective electrodes with internal reference solution (CONISE) and coated graphite‐solid contact electrodes (SCISE) were prepared based on one of the 15‐membered crowns containing two donating S atoms and two phenanthroline‐N atoms (L1). The electrodes reveal a Nernstian behavior over wide Ag+ ion concentration ranges (1.0×10?5?1.0×10?1 M for CONISE and 5.0×10?8?4.0×10?2 M for SCISE) and very low limits of detection (8.0×10?6 M for CONISE and 3.0×10?8 M for SCISE). The potentiometric response is independent from pH of the solution in the pH range 3.0–8.0. The electrodes manifest advantages of low resistance, very fast response and, most importantly, good selectivities relative to a wide variety of other cations. The electrodes can be used for at least 2 months (for CONISE) and 4 months for (SCISE) without any appreciable divergence in potentials. The electrodes were used as an indicator electrode in the potentiometric titration of Ag+ ion and in the determination of silver in photographic emulsions and in radiographic and photographic films.  相似文献   

17.
Acid chrome blue K (ACBK) was electropolymerized on the surface of a glassy carbon electrode (GCE) by cyclic voltammetric sweep in the potential range from –0.2 to 0.9 V. The characteristic of poly‐ACBK film was studied by different methods such as electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. This modified electrode showed excellent electrocatalytic response to curcumin with the increase of the electrochemical responses. Under the optimal conditions a good linear voltammetric response could be obtained over the range of 1.0 × 10?7‐7.0 × 10?5 M and the detection limit was got as 4.1 × 10?8 M (S/N = 3). The method was successfully applied for the determination of curcumin in human urinev samples.  相似文献   

18.
《Electroanalysis》2006,18(8):773-778
A sensitive and selective method for the determination of Pb(II) with a zirconium phosphated silica gel (SiZrPH) modified carbon paste electrode has been developed. The measurements were carried out in three steps including an open circuit accumulation following by electrolysis of accumulated Pb(II) at the modified carbon paste electrode and differential pulse voltammetric determination. The analytical performance was evaluated with respect to the carbon paste composition, pH of solution at the accumulation step, pH and concentration of supporting electrolyte, electrolysis potential, accumulation time and electrolysis time. Two linear calibration graphs were obtained in the concentration ranges 2.5×10?9 mol L?1–5.0×10?8 mol L?1 and 5.0×10?8 mol L?1–5.0×10?6 mol L?1 with an accumulation time of 120 s. The detection limit was found to be 3.5×10?10 mol L?1. The effects of potential interfering ions were studied, and it was found that the proposed procedure is free from interferences of common interfering ions such as tin, thallium and etc. The developed method was applied to Pb(II) determination in a wastewater sample.  相似文献   

19.
《Analytical letters》2012,45(12):1913-1931
Abstract

A voltammetric study of the oxidation of fexofenadine HCl (FEXO) has been carried out at the glassy carbon electrode. The electrochemical oxidation of FEXO was investigated by cyclic, linear sweep, differential pulse (DPV), and square wave (SWV) voltammetry using glassy carbon electrode. The oxidation of FEXO was irreversible and exhibited diffusion‐controlled process depending on pH. The dependence of intensities of currents and potentials on pH, concentration, scan rate, nature of the buffer was investigated. Different parameters were tested to optimize the conditions for the determination of FEXO. For analytical purposes, a very well resolved diffusion‐controlled voltammetric peak was obtained in Britton‐Robinson buffer at pH 7.0 with 20% constant amount of methanol for DPV and SWV techniques. The linear response was obtained in supporting electrolyte in the ranges of 1.0×10?6–2.0×10?4 M with a detection limit of 6.6×10?9 M and 5.76×10?8 M and in serum samples in the ranges of 2.0×10?6–1.0×10?4 M with a detection limit of 8.08×10?8 M and 4.97×10?8 M for differential pulse and square wave voltammetric techniques, respectively. Only square wave voltammetric technique can be applied to the urine samples, and the linearity was obtained in the ranges of 2.0×10?6–1.0×10?4 M with a detection limit of 2.00×10?7 M. Based on this study, simple, rapid, selective and sensitive two voltammetric methods were developed for the determination of FEXO in dosage forms and biological fluids. For the precision and accuracy of the developed methods, recovery studies were used. The standard addition method was used for the recovery studies. No electroactive interferences were found in biological fluids from the endogenous substances and additives present in tablets.  相似文献   

20.
Simultaneous determination of dihydroxybenzene isomers was investigated at a multi‐wall carbon nanotubes (MWCNTs)/β‐cyclodextrin composite modified carbon ionic liquid electrode in phosphate buffer solution (pH 7.0, 1/15 mol/L) in the presence of cationic surfactant cetylpyridinium bromide (CPB). With the great enhancement of surfactant CPB, the voltammetric responses of dihydroxybenzene isomers were more sensitive and selective. The oxidation peak potential of hydroquinone was about 0.024 V, catechol was about 0.140 V and resorcinol 0.520 V in differential pulse voltammetric (DPV) measurements, which indicated that the dihydroxybenzene isomers could be separated entirely. The electrode showed wide linear behaviors in the range of 1.2×10?7–2.2×10?3, 7.0×10?7–1.0×10?3, 2.6×10?6–9.0×10?4 mol/L for hydroquinone, catechol and resorcinol, respectively. And the detection limits of the three dihydroxybenzene isomers were 4.0×10?8, 8.0×10?8, 9.0×10?7 mol/L, respectively. The proposed method could be applied to the determination of dihydroxybenzene isomers in artificial wastewater, and the recovery was from 97.4% to 104.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号