首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2003,15(22):1751-1755
A sensitive, selective and economic stripping voltammetry is described for the determination of trace amounts of zirconium at a morin‐modified carbon paste electrode (morin‐MCPE). Zirconium(IV) can be preconcentrated on the surface of the morin‐MCPE due to forming the Zr(IV)–morin complex. The complex produces two second‐order derivative anodic peaks at 0.69 V (vs. SCE) and 0.75 V when linear‐scanning from 0.0 to 1.0 V. The optimum analytical conditions are: 2.2 mol L?1 HCl, 0.0 V accummulation potential, 90 s accummulation time, 250 mV s?1 scan rate. A linear relationships between the peak currents at 0.75 V and the Zr(IV) concentration are in the range of 2.0×10?8 to 3.0×10?6 mol L?1. The detection limit is 1.0×10?8 mol L?1 (S/N=3) for 120 s accumulation. The RSD for determination of 4.0×10?7 mol L?1 Zr(IV) is 4.8% (n=8). The proposed method has been applied to determine zirconium in ore samples, unnecessarily extracted.  相似文献   

2.
《Electroanalysis》2003,15(9):821-826
A sensitive and selective on‐line voltammetric procedure for determination of traces of Se(IV) is presented. The pulsed potential accumulation was proposed for minimization of interferences of surface active substances and foreign ions. The calibration plot was linear from 1×10?9 mol L?1 to 4×10?8 mol L?1 for accumulation time of 180 s. The relative standard deviation was 6.1% (n=5) for a Se(IV) concentration of 1×10?8 mol L?1. The detection limit estimated from (3 σ) for an accumulation time of 180 s was about 4×10?10 mol L?1. The validation of the procedure proposed was made by a recovery tests for tap and river water samples.  相似文献   

3.
Cathodic stripping voltammetry of selenium(IV) in 0.1 M hydrochloric acid media yielded a nonlinear calibration graph for the concentration range 10?9?10?8 M. In this concentration range, adsorptive stripping voltammetry based on adsorption of the selenium/3,3′-diaminobenzidine complex on the surface of the hanging mercury drop electrode at the deposition potential of +0.05 V (vs. SCE) is more convenient. A linear calibration graph is obtained for selenium concentrations of 3×10?9?3×10?8 M, with an accumulation time of 300 s.  相似文献   

4.
《Analytical letters》2012,45(6):1165-1173
Abstract

The polarographic behavior of the complex of iron–4– (2–pyridylazo) resorcin(PAR) was studied. In HAc– NaAc– EDTA buffer solution, the complex can be adsorped on a hanging mercury drop electrode giving a sensitive adsorptive complex reduction peak with a peak potential at -0.36V(vs. SCE). Optimum experimental conditions were found by the use of 0.08mol/L HAc, 0.06mol/L NaAc, 5.0 × 10?3mol/L EDTA and 1.0 × 10?5mol/L PAR. With preconcentration for 60s, the derivative peak height of the complex compound is linearly proportional to the concentration for Fe in the range from 1.0 × 10?9mol/L to 1.0 × 10?7mol/L. For a 2–min pre–concentration time, the detection limit found was 2.0 × 10?10mol/L. This method has high sensitivity and selectivity. It has been applied to the determination of trace iron in food and water samples without any pre–separation step.  相似文献   

5.
A sensitive adsorptive anodic stripping procedure for the determination of trace zirconium at a carbon paste electrode (CPE) has been developed. The method is based on adsorptive accumulation of the Zr(IV)-alizarin red S(ARS) complex onto the surface of the CPE, followed by oxidation of adsorbed species. The optimal experimental conditions include the use of 0.10 mol · L−1 ammonium acetate buffer (pH 4.3), ARS, an accumulation potential of 0.20 V (versus SCE), an accumulation time of 2 min, a scan rate of 200 mV · s−1 and a second-order derivative linear scan mode. The oxidation peak for the complex appears at 0.69 V. The peak current is proportional to the concentration of Zr(IV) over the range of 1.0 × 10−9–2.0 × 10−7 mol · L−1, and the detection limit is 3 × 10−10 mol · L−1 for a 2 min adsorption time. The relative standard deviations (n = 8) for 5.0 × 10−8 and 5.0 × 10−9 mol · L−1 Zr(IV) are 3.3 and 4.8%, respectively. The proposed method was applied to the determination of zirconium in ore samples with satisfactory results.  相似文献   

6.
Using cyclic voltammetry and chronoamperometry with several anodic steps the deposition and particularly the oxidation of germanium from a HMDE was investigated within pH range 4–12 at Ge (IV) concentrations ranging from 4×10?7M to 1×10?4M in the absence of ligands capable to form the complex compounds with Ge(IV) in a solution. It was found that the initially formed product of electrodeposition is a homogeneous, usually supersaturated amalgam. Germanium from this amalgam oxidizes at about 1 V (vs. mercury sulphate reference electrode) or after some induction period, the length of which depends on concentration of Ge(0) in mercury, it begins to crystallize forming heterogenous germanium amalgam. Germanium from this heterogenous amalgam oxidizes in a separate voltammetric peak at more positive potentials. The solubility of germanium in mercury was evaluated on the basis of the oxidation current of homogenous amalgam and the value obtained is equal to (2±0.5)×10?7M i.e. (1.1±0.3)×10?7 wt. %. Applying the Stevens and Shain method the diffusion coefficient of germanium in mercury was found to be (1.32±0.1)×10?5 cm2 s?1.  相似文献   

7.
《Analytical letters》2012,45(10):2203-2215
Abstract

A new system of polarographic adsorptive wave for determining trace scandium was proposed. In 0.2 mol/L NH4OAc, the Sc(III)- ACBK [1,8- dihydroxy- 2- (2- hydroxy- 5- sulfo- 1- phenylazo)- 3,6- disulfo- naphthalene, called acid chrome blue K] complex emerged a sensitive adsorptive complex wave(Ep′ = -0.67V). The molar ratio of Sc(III) to ACBK in the complex was established as 1: 2 and the apparent stability constant β2 = 2.7 × 1015. But for Y(III), the molar ratio was 1: 1 and β = 1.5 × 105. Because of the particularity of Sc complex, the sensitivity and the selectivity of determination Sc are much better than that of other rare earth ions. The detection limit is 1.1 × 10?7 mol/L for oscillopolarography and 2.0 × 10?8 mol/L for adsorptive stripping voltammetry.  相似文献   

8.
Ethylenediamine tetraacetic acid (EDTA) terminated polyacrylamide was obtained by using the EDTA–cerium(IV) ammonium nitrate [Ce(IV)] redox initiator in the aqueous polymerization of acrylamide. The polymerization behaviors as a function of the concentration of Ce(IV), EDTA, and acrylamide as well as temperature were studied. The consumption rate of cerium(IV) depends a first-order reaction on the ceric ion concentration ([Ce(IV)]). The complex formation constant (K) and disproportionation constant (kd) of Ce(IV)–EDTA chelated complex are 1.67 × 104 and 3.77 × 10?3, respectively. The rate dependences of polymerization on monomer concentration and EDTA concentration both follow a second-order reaction in the run of initial monomer concentration ([M]i) equal to 0.2 mol dm?3. The number average molecular weight increases linearly with the ratio of [M]i/[Ce(IV)]i. The mechanism and kinetics for the polymerization was proposed. The kinetic parameters involved were determined. © 1992 John Wiley & Sons, Inc.  相似文献   

9.
《Analytical letters》2012,45(15):2673-2682
Abstract

A new heteronuclear complex, rare earth (III)-copper (II)-m-trifluomethyl chlorophosphonazo (CPA-mCF3) system for determining trace rare earth ions is presented. In a medium of 0.02mol/L NH4Cl,1. 0×10?3mol/L Cu(II),1.0×10?5 mol/L CPA-mCF3, a very sensitive polarographic adsorptive wave is observed by using a single sweep oscillopolarograph at about –0.83V (vs. Ag/AgCl). The linear relationship between the peak current and the concentration of rare earth exists from 6. 0×10?9 to 1. 0×10?6 mol/L. The detection limit of rare earth is down to 2. 0×10?9 mol/L for Tm3+. This method has been applied to determine trace RE in several samples of Chinese tea. The results are satisfactory. The composition of the complex is detected as RE (II): Cu (II): CPA-mCF3 = 1: 1: 2.  相似文献   

10.
A new method for the determination of trace copper was described. A multiwalled carbon nanotube modified carbon paste electrode was prepared and the adsorptive voltammetric behavior of copper‐alizarin red S (ARS) complex at the modified electrode was investigated. By use of the second‐order derivative linear sweep voltammetry, it was found that in 0.04 mol/L acetate buffer solution (pH 4.2) containing 4×10?6 mol/L ARS, when accumulation potential is 0 mV, accumulation time is 60 s and scan rate is 100 mV/s, the complex can be adsorbed on the surface of the electrode, yielding one sensitive reduction peak at ?172 mV (vs. SCE). The peak current of the complex is proportional to the concentration of Cu(II) in the range of 2.0×10?11–4.0×10?7 mol L?1 with a detection limit (S/N=3) of 8.0×10?12 mol/L (4 min accumulation). The proposed method was successfully applied to the determination of copper in biological samples with satisfactory results, the recoveries were found to be 96%–102%.  相似文献   

11.
WANG Yuane  PAN Dawei  LI Xinmin  QIN Wei 《中国化学》2009,27(12):2385-2391
A bismuth/multi‐walled carbon nanotube (Bi/MWNT) composite modified electrode for determination of cobalt by differential pulse adsorptive cathodic stripping voltammetry is described. The electrode is fabricated by potentiostatic pre‐plating bismuth film on an MWNT modified glassy carbon (GC) electrode. The Bi/MWNT composite modified electrode exhibits enhanced sensitivity for cobalt detection as compared with the bare GC, MWNT modified and bismuth film electrodes. Numerous key experimental parameters have been examined for optimum analytical performance of the proposed electrode. With an adsorptive accumulation of the Co(II)‐dimethylglyoxime complex at ?0.8 V for 200 s, the reduction peak current is proportional to the concentration of cobalt in the range of 4.0×10?10?1.0×10?7 mol/L with a lower detection limit of 8.1×10?11 mol/L. The proposed method has been applied successfully to cobalt determination in seawater and lake water samples.  相似文献   

12.
This paper reports a simple and highly selective method for the separation, preconcentration, and determination of trace amounts of thorium and uranium in some complex samples via staircase flotation. The method is based on the initial flotation of the Th(IV)‐arsenazo III complex in the presence of U(VI) from a solution of 5 mol dm?3 HCl, then reduction of U(VI) to U(IV) and repetition of the flotation step. In both steps, the floated complex was dissolved in a 5‐mL portion of methanol and its absorbance was measured at 655 nm, spectrophotometrically. For a 30‐mL portion of the sample, Beer's law was obeyed over the concentration ranges of 3.40 × 10?7to 3.06 × 10?6 mol dm?3 for Th(IV) and3.40 × 10?7 to 3.40 × 10?6 mol dm?3 for U(IV) with the apparent molar absorptivity of 4.20 × 105 dm3 mol?1 cm?1 and 3.59 × 105 dm3 mol?1 cm?1, respectively. The RSDs (n = 7) corresponding to 1.7 × 10?6 mol dm?3 of Th(IV) and U(IV) were obtained as 1.7% and 1.87%. The detection limits (7 blanks) for both the metal ions were found to be 1.7 × 10?7 mol dm?3. The important benefit of the method is that the determinations are free from the interference of almost all cations and anions found in the complex matrixes, such as seawater samples. The proposed method was also applied to reference materials, and the determinations were shown to have good agreement with the certified values.  相似文献   

13.
《Electroanalysis》2005,17(21):1945-1951
Tin(IV) porphyrins derivatives were used as ionophores for phthalate selective electrodes preparation. The influence of ionophore structure and membrane composition (amount of incorporated ionic sites) on the electrode response, selectivity and long‐term stability were studied. Poly(vinyl chloride) polymeric membranes plasticized with o‐NPOE (o‐nitrophenyloctylether) and containing Sn(IV)‐tetraphenylporphyrin (TPP) dichloride (Sn(IV)[TPP]Cl2) or Sn(IV)‐octaethylporphyrin (OEP) dichloride (Sn(IV)[OEP]Cl2), and in some cases incorporating lipophilic cationic (tetraocthylammonium bromide ‐ TOABr) and anionic (sodium tetraphenylborate – NaTPB and potassium tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate‐KTFPB) additives, were prepared and their potentiometric characteristics compared. Both ionophores are shown to operate via a neutral mechanism, and the addition of 10 mol % of lipophilic quaternary ammonium salt derivative to the membrane is required to achieve optimal electrode performance. The potentiometric units prepared, with Sn(IV)[TPP]Cl2 (Type A) or Sn(IV)[OEP]Cl2 (Type B) without additives, presented a slope of ?52.8 mV dec?1 and ?58.8 mV dec?1 and LLLR of 9.9×10?5 mol L?1 and 9.9×10?6 mol L?1, respectively. The units prepared using the same metalloporphyrins and incorporating 10% mol TOABr presented a slope of ?55.0 mV dec?1 and ?57.8 mV dec?1 and LLLR of 5.0×10?7 mol L?1 and 3.0×10?7 mol L?1. Their analytical usefulness was assessed by potentiometric determinations of phthalate in water and industrial products providing results that presented recoveries of about 100%.  相似文献   

14.
Some derivatives of quinoxaline-N-dioxides, which are used as growth promoters in animals (Carbadox, Cyadox, Olaquindox), can be determined at nanomolar concentrations by stripping volatammetry from a static mercury drop electrode after adsorptive accumulation on the electrode surface. With differential pulse voltammetry, in 0.1 M sodium perchlorate with 5% (v/v) dimethylformamide, the detection limit for Cyadox is 3 × 10?10 mol 1?1 after accumulation for 300 s in stirred solution; detection limits are 2 × 10?9 mol 1?1 (180 s accumulation) for Carbadox and 7 × 10 mol 1?1 (60 s accumulation) for Olaquindox. The relative standard deviations are 0.85% for Cyadox (4 × 10?9 mol 1?1), 0.54% for Carbadox (2 × 10?8 mol 1?1) and 0.95% for Olaquindox (2 × 10?8 mol 1?1). Surfactants interfere.  相似文献   

15.

A novel, sensitive catalytic adsorptive stripping voltammetric procedure which can be used to determine trace amounts of germanium is described. The method is based on the interfacial accumulation of the complex formed by Ge(IV) and the product of the reduction of chloranilic acid on the hanging mercury drop electrode or the renewable silver amalgam film electrode, and its subsequent reduction from the adsorbed state followed by the catalytic action of the V(IV)·HEDTA complex. The presence of V(IV)·HEDTA greatly enhances the adsorptive stripping response of Ge. The reduction of the Ge(IV) in the presence of chloranilic acid and V(IV)·HEDTA was investigated in detail and the effects of pH, electrolyte composition, and instrumental parameters were studied. Under optimal conditions, the catalytic peak current of germanium exhibited good linearity for Ge(IV) concentrations in the range of 0.75–60 nM (for 60 s of accumulation at −0.1 V, r2 = 0.995) and a low limit of detection (LOD = 0.085 nM). The procedure was successfully applied to determine Ge in water samples.

  相似文献   

16.
A fast adsorptive stripping voltammetric procedure for simultaneous determination of Ni(II) and Co(II) in the presence of nioxime as a complexing agent at an in situ plated lead film electrode was described. The time of determination of these ions was shortened due to the application of gold as a substrate for lead film. At gold substrate lead film formation and accumulation of Ni(II) and Co(II) complexes with nioxime proceeds simultaneously. To obtain a stable signals for both ions a simple procedure of activation of the electrode was proposed. Calibration graphs for an accumulation time of 20 s were linear from 5×10?9 to 1×10?7 mol L?1 and from 5×10?10 to 1×10?8 mol L?1 for Ni(II) and Co(II), respectively. The procedure with the application of a lead film electrode on a gold substrate was validated in the course of Ni(II) and Co(II) determination in certified reference materials.  相似文献   

17.
A highly sensitive method has been developed for the determination of titanium(IV) and iron(III) by ion-pair reversed phase liquid chromatography using sodium 1,2-dihydroxybenzene-3,5-disulfonic acid (Tiron) as a precolumn chelating reagent. The metal - Tiron chelates were separated on a C18 (ODS) column; the mobile phase was a 2:8 (v/v) mixture of acetonitrile and acetate buffer (0.04 mol/L, pH 6.2) containing 2.0 × 10?3 mol/L Tiron, 0.04 mol/L tetrabutylammonium bromide, and 0.1 mol/L potassium nitrate. The detection limits for titanium(IV) and iron(III) are 0.5 and 2.0 μg/L, respectively. The method has been applied to the simultaneous determination of titanium(IV) and iron(III) in river water samples and has furnished highly precise results.  相似文献   

18.
An adsorptive stripping voltammetric method for speciation analysis of chromium in natural water samples has been developed. Ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) were used as complexing agents for Cr(III) present in the sample and formed as products of Cr(VI) reduction, respectively. Under optimum experimental conditions linear relations in the range from 1×10?6 to 3×10?5 mol L?1 without accumulation and from 1×10?9 to 1×10?7 at 30 s accumulation time were obtained for Cr(III) and Cr(VI), respectively. For samples in which Cr(III) concentration is higher than 1×10?6 mol L?1 the Cr(III) and Cr(VI) were determined simultaneously in one voltammetric cell. For samples in which Cr(III) concentration is below 1×10?6 mol L?1 only Cr(VI) was selectively determined in the presence of Cr(III), which did not influence the Cr(VI) signal. The determination of Cr(III) and Cr(VI) was successful with the application of the proposed procedure in the presence of common foreign ions. The presented method was applied for the speciation of chromium in spiked tap and river water samples with satisfactory results.  相似文献   

19.
In the present work, the catalytic adsorptive stripping voltammetric procedure for trace determination of Cr(VI) in the presence of a high excess of Cr(III) in natural waters with a complicated matrix has been developed. The influence from potentially interfering substances such as organic matter was successfully eliminated by exploiting adsorptive properties of polymeric resin. The detection limit estimated from 3 times the standard deviation for a low Cr(VI) concentration in the simultaneous presence of a 2×103 fold excess of Cr(III), 50 mg L?1 surfactants, 50 mg L?1 humic substances and the accumulation time of 30 s was about 5.3×10?10 mol L?1.  相似文献   

20.
《Electroanalysis》2006,18(22):2218-2224
This article deals with the development of a method for the determination of osmium at a carbon paste electrode (CPE) modified with cationic surfactants of the quaternary ammonium salt type; namely, cetyltrimethylammonium bromide (CTAB) and 1‐(ethoxycarbonyl)‐pentadecyltrimethyl‐ammonium bromide (Septonex); both being added in situ and serving for preconcentration of osmium via its hexachloroosmate(IV) anion. The proper electrochemical detection was performed by cathodic scanning in the differential pulse voltammetric mode. Optimization studies concerning important experimental parameters also included a specially performed potentiometric titration, helping to define the actual stoichiometry for the ion‐pairing process, the main principle and driving force of the accumulation step. In a chloride/acetate buffer based supporting medium and with Septonex as the modifier of choice, the reduction signal for osmium was found to be proportional to the Os(IV) concentration in a range from 5×10?9 to 5×10?7 mol L?1 with a limit of detection close to 5×10?9 mol L?1 (with preconcentration for 60 s). The method capable to determine Os(IV) in the presence of both Pt(IV) and Ir(III) was tested on model solutions as well as with real sample of industrial waste water (spiked with the analyte); both yielding the recovery rates within 88–99%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号