首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
细观力学的一个主要研究内容是求复合材料的等效弹性性能.常见的细观力学模型解析公式一般假定基体各向同性且只存在纤维和基体两相材料,实际复合材料的基体和纤维之间往往存在一个横观各向同性的界面相,该三相复合材料的等效性能可由两个两相复合材料性能的组合得到,这就需要求出横观各向同性基体复合材料的等效弹性常数.该文基于两相同心圆柱模型,首先导出了横观各向同性基体内应力与增强纤维内应力之间桥联矩阵的解析公式,与基于数值积分Eshelby张量得到的Mori-Tanaka桥联矩阵相符,再进一步获得了横观各向同性基体复合材料的5个弹性常数显式表达式.文中还给出了扩展的桥联模型显式公式.选用适当的桥联参数,两种模型所得结果十分接近.  相似文献   

2.
本文提供一种对于含有加捻纤维束的复合材料由于固化而产生的热残余应力的分析研究.纤维束中的纤维经过加捻产生了一种螺旋形状,这种形状所产生的三维热弹性力学问题可以利用能量法获得解答.这个问题的热残余应力场可以表示为纤维、基体材料的性质以及纤维束几何参数的函数.纤维/基体界面上的残余应力(包括环向和径向的应力)都可以从这些分析中得到.本文分析的结果表明:加捻纤维束构成的复合材料,由于纤维的适当加捻,可以减弱由于纤维与基体各具不同的热膨胀系数而产生的热固化残余应力.  相似文献   

3.
桥联理论研究的最新进展   总被引:4,自引:0,他引:4  
欲根据组分材料——纤维和基体性能参数预报复合材料的强度,必须解决3个方面的问题.首先,必须准确计算出纤维和基体中的内应力;其次,必须基于这些内应力,建立起复合材料的有效破坏判据,即细观力学强度理论;最后,必须根据独立测试的基体性能,准确定义其现场强度输入数据,因为后者无法测量.复合材料强度预报之所以困难,在于所涉及的每一个问题都极具挑战.由黄争鸣创建和发展的桥联理论,系统给出了这3方面问题的有效解决方案.该文简要介绍这些解决方案,包括桥联理论的最新进展及有待进一步研究的课题.  相似文献   

4.
实验观测表明,准各向同性材料,如N轴纤维增强复合材料层合板和编织材料,其面内刚度和强度具有不同程度的方向性,且强度的各向异性程度往往明显高于弹性性质的各向异性程度。本文根据张量函数表示理论所提出的本构方程和强度准则的一般模型,结合有关实验数据,分析了材料弹性性能和强度的非各向同性效应。具体给出了几类本构模型和强度准则的特殊形式并讨论了本文所得到结果的若干力学性质。本文第Ⅱ部分具体讨论了含单个椭圆孔或裂纹的无限大板的有关强度的各向异性效应,并用细观力学方法检验了本文的模型。  相似文献   

5.
在有限元分析的基础上建立了一个单向应力状态下金属基短纤维复合材料(MMC)的统计蠕变模型.首先建立细胞模型并进行有限元分析,得到了单向应力状态下材料细观尺寸及载荷方向对宏观蠕变响应的影响规律.通过在细胞模型中增加一界面层(考虑材料特性和厚度)来研究基体和纤维的界面对MMC宏观蠕变响应的影响.基于细胞模型的数值结果,提出了一适用于纤维平面随机分布的随机统计模型,该模型考虑了纤维的断裂.通过试验获得纤维的统计分布规律.分析结果表明随机统计模型可以满意地描述试验结果.进一步讨论了材料细观尺寸,纤维的断裂特性以及界面层的材料特性和厚度对MMC宏观蠕变响应的影响.  相似文献   

6.
提出了形成三维Michell桁架的有限元方法.采用正交异性纤维增强复合材料模型模拟Michell桁架.纤维在节点处的密度和方向作为基本设计变量.根据有限元分析得到节点位置的应力和应变.采用迭代方法,将纤维方向调整到主应力方向;根据纤维方向的应变改变纤维密度. 仅需少量迭代即可得到满足Michell准则的应变场和类桁架连续体.最后根据节点处的纤维方向用连续线表示出Michell桁架.几个算例表明了算法的有效性和计算效率.  相似文献   

7.
本文提出预测复合材料中裂纹方向的比应变能密度准则,并将Tsai-Hill与Norris准则扩展来预测复合材料中的开裂方向.用这三个准则预测了具有各种不同纤维方向的单向纤维复合材料的裂纹扩展方向,预测结果与现有的比正应力准则和应变能密度准则进行了对比.  相似文献   

8.
介绍了钢球贯穿纤维增强复合材料靶板的一维工程近似分析方法.钢球被假定为刚体,复合材料靶被近似为横观各向同性弹埋性材料.通过将球腔膨胀模型和柱腔贯穿相结合的方法,提出了一种改进的复合材料靶抗贯穿的工程近似分析方法.利用该方法,对三维芳纶纤维编织(3DKw)复合材料靶板开展了抗钢球贯穿的工程近似分析,计算结果与实验结果一致性较好;并进一步讨论了计算中材料主要参数对靶板抗贯穿规律的影响.  相似文献   

9.
对单向纤维增强陶瓷基复合材料内垂直于纤维的基体裂纹扩展和偏转条件进行研究,侧重于界面性能对裂纹尾区桥联力学分析的影响。结果表明:在界面相脱粘摩擦区和弹性滑移区共同影响下,界面韧性gi与增强纤维相关联参量(σcr2r/Ef)比值是界面脱粘的重要控制条件,并决定主裂纹是否转向,脱粘发生后脱粘摩擦区的长度取决于摩擦力τ0并与其成反比.此外,界面厚度、剪切模量等也对桥联断裂分析产生重要影响.  相似文献   

10.
基于线性内聚力模型,建立三维代表性体积单元,对形状记忆合金颗粒与金属玻璃基体界面分离(即界面脱粘)过程进行了有限元模拟,并讨论了弱界面对复合材料力学性能的影响。结果表明:界面性能的好坏显著影响基体与颗粒之间的应力传递;随着界面弹性模量的降低,界面的失效应变越大,复合材料整体的失效应变也越大。  相似文献   

11.
A generic stochastic theory of composite materials with continuous, randomly curved (imperfect) fiber reinforcements, recently developed by the present authors, enables one to quantify the effect of fiber deviations from the assumed perfect paths. The theory of random functions and stochastic extension of the orientational averaging approach are utilized to evaluate the mean values and standard deviations of the full set of anisotropic stiffness characteristics. The major advantage of this novel stochastic approach is its applicability to practically any fiber reinforcement architecture, from unidirectional to multidirectional, 3-D woven, and braided composites. Importantly, the approach does not ask for exact quantification of the reinforcement imperfections, but needs only a limited knowledge of the mean path of the reinforcement and standard deviation of the local tangent. Numerical examples illustrating applications of the stochastic theory developed consider three types of composites having (i) unidirectional, (ii) biaxial, 2-D braided, and (iii) 3-D orthogonally woven reinforcements. The first example concerns validation of the model. The second example is selected due to the commonly observed significant randomness of the fiber architecture in biaxially braided composite shell elements. The third example illustrates the effect of Z-yarn waviness (illustrated by optical microscopy) in orthogonally woven composites on their elastic characteristics.  相似文献   

12.
This article presents a mathematical model for predicting the transverse strength of unidirectional fiber composites subjected to combination transverse loading under different conditions. The behavior of the matrix is described by nonlinear physical equations consistent with the strain theory of plasticity for the active loading section. The fibers are assumed to be isotropic and elastic. The boundary-value problem of micromechanics that is formulated includes strength criteria for the matrix and fibers that mark the beginning of their possible failure. The modeling of the fracture process is taken farther through the use of a scheme that reduces the stiffness of the matrix and fibers in the failed regions in relation to the sign of the first invariant of the stress tensor. The method of local approximation is used together with the finite-element method to calculate the stress and strain fields in unidirectional composites with cylindrical fibers in a tetragonal layup. The model is used to study the behavior of an epoxy-based organic-fiber-reinforced plastic subjected to transverse loading in different simple paths — including simultaneous compressive and tensile loads, as well as transverse shear.Paper to be presented at the Ninth International Conference on the Mechanics of Composite Materials (Riga, October 1995).Translated from Mekhanika Kompozitnykh Materialov, Vol. 31, No. 4, pp. 473–481, July–August, 1995.  相似文献   

13.
In the present work, a phenomenological plane-stress damage-mechanics-based model for textile-reinforced composites is presented and its predictive capability is evaluated by carrying out a series of experimental tests. Damage variables are introduced to describe the evolution of the damage state and, as a subsequence, the degradation of material stiffness. For calculating the nonlinear stress and strain distribution of complexly loaded composites with a textile reinforcement, a special emphasis has to be placed on the interaction between the fiber failure due to the stress in the fiber direction and the matrix failure due to the transverse and shear stresses. This demands the formulation of realistic failure criteria taking into account the microstructural material behavior and different fracture modes. The new failure criteria, like the fracture mode concepts, consider these fracture modes, as well as further fracture types, in the reinforcement plane. The failure criteria are based on equations for failure surfaces in the stress space and damage thresholds in determining the stiffness degradation of the composite. The model proposed was used to characterize the strength and the failure behavior of carbon-fiber-reinforced composites. For this purpose, several unidirectional and bidirectional tests were performed to determine the specific properties of the material. The specimens were investigated by using acoustic emission techniques and strain-controlled tension and torsion tests.Russian translated published in Mekhanika Kompozitnykh Materialov, Vol. 40, No. 6, pp. 791–810, November–December, 2004.  相似文献   

14.
Reinforcing units, FRP, of unidirectional fiber composites for concrete have elastic behavior up to tensile failure. For safety reasons an elongation of 3% at maximum load is usually required for the reinforcement. Ductile behavior with the necessary elongation and stress hardening could be obtained with braided fiber strands around a core of foam plastic, thin glass fiber cylindrical shell, or unidirectional carbon fibers. Braids around a porous core reveal the ductility when epoxy resin breaks up and collapse of core enables the braids to rotate. The same seems to happen at that cross section, where carbon fiber core breaks in tension. The best result is obtained using a cylindrical glass fiber reinforced core shell surrounded with aramid fiber braid.Presented at the Ninth International Conference on the Mechanics of Composite Materials, Riga, October, 1995.Division of Building Materials, Chalmers University of Technology, S412 96 Göteborg, Sweden. Institute of Polymer Mechanics, Latvian Academy of Sciences, Riga, LV-1006 Latvia. Published in Mekhanika Kompozitnykh Materialov, Vol. 32, No. 2, pp. 167–179, March–April, 1996.  相似文献   

15.
A model for a flat isolated layer of a unidirectional fibrous composite with a regular structure is constructed to investigate the possible variants of its failure development. An integrodifferential equation for determining the forces in fibers is obtained. Primary attention is focused on examining the failure process after the rupture of one fiber. This causes a drastic redistribution of stresses, which can lead to a failure of adjacent fibers owing to the increased load on them, to an interfacial shear fracture, and to the matrix cracking. It is shown that the development of layer failure is determined by the strength of fibers, the crack resistance of the matrix in axial tension and transverse shear, and also by the adhesion strength of the matrix-fiber interface. The sufficient conditions of applicability of the brittle fracture model are formulated.  相似文献   

16.
Within the framework of the three-dimensional linearized theory of stability, an approach for investigating fiber buckling in the structure of unidirectional fibrous viscoelastic composites is developed. For simplicity, a small fiber concentration is considered, and the buckling problem for a single elastic fiber in an infinite viscoelastic matrix is investigated. In this case, it is assumed that the fiber has an insignificant initial periodical imperfection, and the growth of this imperfection with time is studied. The state where this imperfection starts to grow indefinitely is taken as a fiber-buckling criterion, and the critical time is determined from this criterion.  相似文献   

17.
This paper aims to investigate the effect of microstructure parameters (such as the cross-sectional shape of fibers and fiber volume fraction) on the stress–strain behavior of unidirectional composites subjected to off-axis loadings. A micromechanical model with a periodic microstructure is used to analyze a representative volume element. The fiber is linearly elastic, but the matrix is nonlinear. The Bodner–Partom model is used to characterize the nonlinear response of the fiber-reinforced composites. The analytical results obtained show that the flow stress of composites with square fibers is higher than with circular or elliptic ones. The difference in the elastoplastic response, which is affected by the fiber shape, can be disregarded if the fiber volume fraction is smaller than 0.15. Furthermore, the effect of fiber shape on the stress–strain behavior of the composite can be ignored if the off-axis loading angle is smaller than 30°.  相似文献   

18.
A theoretical model is developed to analyze the stress transfer between fiber and matrix through the interphase with finite thickness. The Young's modulus of interphase is assumed to be homogeneous uniform or power-graded along radial direction while other material parameters are constants. The bonds between fiber and interphase as well as between interphase and matrix are perfect. The geometrical equations are strictly satisfied except that the radial displacement gradient with respect to the axial direction is neglected, as its magnitude is much smaller than that of the axial displacement gradient with respect to the radial direction. The equilibrium equations along radial direction are strictly satisfied, while the equilibrium equations along axial direction are satisfied in the integral forms. In addition, both the interfacial displacement and stress continuity conditions as well as stress boundary conditions are enforced exactly. Two coupled 2nd-order ordinary differential equations can be obtained in terms of average axial stresses in fiber and matrix. Finite element analysis (FEA) with refined mesh for single-fiber composite containing uniform interphase with finite thickness is developed to validate the present model. Series of parameter studies are performed to investigate the influence of interphase properties and thickness as well as the fiber volume content and model length on the stress distribution in composites.  相似文献   

19.
The present work deals with the numerical modeling of 1‐3 periodic composites made of piezoceramic (PZT) fibers embedded in a soft non‐piezoelectric matrix. We especially focus on predicting the effective co‐efficients of the periodic transversely isotropic piezoelectric fiber composites using representative volume element method (unit cell method). The results which are obtained from the FEM technique are compared with analytical homogenization method for different volume fractions. The effective co‐efficients are obtained for rectangular and hexagonal arrangement of unidirectional piezoelectric fiber composites. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The effects of Poisson contraction on matrix cracking in unidirectional fiber-reinforced brittle-matrix composites are studied in this paper. The fibers, initially held in the matrix by a compressive pressure due to the thermal expansion mismatch, are subjected to frictional slipping over the matrix as soon as a fiber-bridged crack is formed. The friction between the fibers and the matrix is assumed to follow the Coulomb friction law. A shear-lag model, which includes the Poisson contraction and the friction due to the relative fiber/matrix slipping, is adopted to calculate the stress and strain fields in the fibers and matrix. Using the energy balance approach, a relation for the critical matrix cracking stress for propagating of a semi-infinite fiber-bridged crack is derived. The results obtained show that the Poisson contraction has a strong effect on the predicted matrix cracking stress in brittle-matrix composites, especially in composites with a stiff matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号