首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Mg-Al-CO3与Zn-Al-CO3水滑石热稳定性差异的研究   总被引:12,自引:0,他引:12  
层状双金属氢氧化物(Layered double hydroxides,简称LDHs)是一种类近年来发展迅速的阴离了型粘土,又称水滑石,其组成通式为[M(II)1-xM(III)x(OH)2]x(OH)2]^x+Ax/n^n-mH2O,其中M(II)是二介金属离子,M(III)是三价金属离子,A^n-是阴离子,这种材料是由相互平行的层板组成,层板带有永在电荷,层间具有可交换的阴离子以维持电荷平衡,通过离子交换可在层间嵌入不同的基团,制备许多功能材料,被广泛作催化剂、吸附剂及油田化学品等,已引起人们的关注^[1-4]。有关Mg-Al-CO3与Zn-Al-CO3水滑石的合成及性能研究国内外已有大量报道^[1,2],本文对两者热稳定性存在的差异进行了研究,这对深化此类材料的认识具有参考作用。  相似文献   

2.
水滑石是一种具有层状结构的阴离子粘土,其结构类似于水镁石,化学通式为[M2+1-xM3+x(OH)2][An-]x/n·mH2O,其中M2+和M3+分别代表层板上占据八面体氢氧化物中心位置的二价和三价金属离子,An-为层间阴离子.  相似文献   

3.
水滑石是一种具有层状结构的阴离子粘土,其结构类似于水镁石,化学通式为[M2+1-xM3+x(OH)2][An-]x/n·mH2O,其中M2+和M3+分别代表层板上占据八面体氢氧化物中心位置的二价和三价金属离子,An-为层间阴离子.  相似文献   

4.
水滑石(Layered Double Hydroxides,简称LDHs)是一类具有层状结构的阴离子型粘土[1],其结构类似于水镁石,化学通式为x/n ·mH2O ,其中M2+和M3+分别代表层板上占据八面体氢氧化物中心位置的二价和三价金属离子,An-为层间阴离子.以半径相似的二价、三价过渡金属阳离子部分或全部取代Mg、Al可合成多种二元、三元甚至四元水滑石类化合物HTLcs(Hydrotalcite-like compounds);将较大的阴离子基团(如杂多阴离子等) 引入层间则可合成柱撑水滑.  相似文献   

5.
二元类水滑石层板组成、结构与性能的理论研究   总被引:8,自引:0,他引:8       下载免费PDF全文
采用晶体学理论建立二元类水滑石(LDHs)微观结构模型与静电势能模型,将层板金属离子间距、层板电荷密度、层间阴离子间距等微观结构参数定量化,并将层间阴离子的静电势能表示成层板金属离子半径和物质的量之比、插层阴离子尺寸和电荷的函数。研究结果表明:LDHs层板金属离子间距应用离子紧密堆积来估算和孔径按阴离子平面六方点阵分布来计算是可行的;调变层板金属离子种类与物质的量之比影响层间阴离子的稳定性,势能计算值与文献报道的LDHs热稳定性次序一致。所以该模型可用于预测LDHs的微观结构参数以及热稳定性,为新型层状双羟基材料的定向合成提供思路。  相似文献   

6.
水滑石(LayeredDoubleHydroxides,简称LDHs)作为一类重要的柱层材料已引起人们的重视[1,2].人们利用水滑石间柱阴离子的可交换性的特点[3].将各种阴离子如无机和有机阴离子[4]、同多和杂多阴离子(Polyoxometalates;简称POMs)[5]相继被引入水滑石层间.因此得到了具有高  相似文献   

7.
以Mg-Al-NO3水滑石(LDHs)为载体,将5-氟尿嘧啶(5-FU)通过离子交换法插入其层间,得5-FU/LDHs缓释材料。并对水滑石表面进行弱酸预处理改性,利用XRD、FTIR、TG-DSC、SEM和零电荷点(pHPZC)等表征手段,考察酸预处理对水滑石表面化学性质及微观结构的影响。结果表明,5-FU/LDHs的层间距从0.858 nm扩大到1.064 nm,层间5-FU2阴离子与主体层板通过氢键与静电作用,以呈一定角度单层交替排列于层间。酸预处理的水滑石粒径变小,层板正电荷密度增大。5-FU的释放机理是物理扩散、离子交换和药物溶解等协同作用,酸预处理可提高水滑石的缓释性能和稳定性。  相似文献   

8.
彭芋杰  许林 《化学研究》2012,23(5):36-39
采用离子交换法合成了一种新型的杂多酸阴离子[Co2Bi2W20O70]10-柱撑水滑石类层状化合物,利用X射线衍射仪和傅立叶变换红外光谱仪分析了其晶相结构;研究了[Co2Bi2W20O70]10-柱撑水滑石光催化降解甲基橙的活性.结果表明,合成的[Co2Bi2W20O70]10-杂多酸阴离子柱撑水滑石较好地保持了水滑石原有的晶体形貌,具有较高的离子交换度.与此同时,杂多酸阴离子替换NO3-后,可以在一定程度上提高催化剂的催化活性.这主要归因于水滑石材料中杂多酸阴离子和水滑石层板之间的协同效应.  相似文献   

9.
以Mg-Al-NO3水滑石(LDHs)为载体,将5-氟尿嘧啶(5-FU)通过离子交换法插入其层间,得5-FU/LDHs缓释材料。并对水滑石表面进行弱酸预处理改性,利用XRD、FTIR、TG-DSC、SEM和零电荷点(pHPZC)等表征手段,考察酸预处理对水滑石表面化学性质及微观结构的影响。结果表明,5-FU/LDHs的层间距从0.858nm扩大到1.064nm,层间5-FU2阴离子与主体层板通过氢键与静电作用,以呈一定角度单层交替排列于层间。酸预处理的水滑石粒径变小,层板正电荷密度增大。5-FU的释放机理是物理扩散、离子交换和药物溶解等协同作用,酸预处理可提高水滑石的缓释性能和稳定性。  相似文献   

10.
由于水滑石具有层板阳离子可调控、层间阴离子可交换、酸碱性等独特的性能,在医药、离子交换、催化、材料阻燃等领域备受研究者关注。特别是水滑石用作阻燃材料时,具有无卤、无毒、不产生有毒和腐蚀性气体、阻燃和抑烟性能优良等突出优点,已成为当前材料阻燃领域研究的热点。然而,水滑石也存在热稳定性较差、容易聚集、分散性较差等缺点,故国内外学者开展了一些水滑石阻燃剂改性的系列研究。本文阐述了近年来国内外学者利用Ca2+、Mg2+、Al3+等阳离子对水滑石阻燃剂进行改性,以及应用BO33-、SiO32-等阴离子对水滑石阻燃剂进行改性等方面的研究进展,并对水滑石在生物质材料阻燃、低成本水滑石阻燃剂的合成、水滑石协效阻燃剂的研究、水滑石阻燃剂工业化生产新工艺与设备、洁净化制备技术等方面的研究与应用前景进行了展望。  相似文献   

11.
The thermal decomposition of Mg-Al hydrotalcite and the subsequent reconstruction of the decomposed products in the presence of water vapor (2 vol. % H(2)O in N(2)) have been investigated by in situ XRD. Thermographic analysis and temperature-programmed desorption MS results complemented the diffraction data. Valuable mechanistic and kinetic insights into these processes, which are of prime importance for optimal activation of this type of material for catalytic applications, were obtained. Hydrotalcite decomposition to the mixed oxide proceeds via formation at 423-473 K of an intermediate phase, consisting of a highly disordered, dehydrated, layered structure. The latter evolves by removal of interlayer water on heating, causing a shrinking of the interlayer space (it is up to 45 % smaller than in the as-synthesized hydrotalcite). Above 623 K, Mg(Al)O(x) oxide with the periclase structure is formed. Reversion of the intermediate dehydrated structure to hydrotalcite upon contact with water vapor is complete and very fast at room temperature. Recovery of hydrotalcite from the oxide calcined at 723 K is two orders of magnitude slower than rehydration of the intermediate layered structure and one order of magnitude slower than the typically practiced liquid-phase reconstruction. In contrast to the decomposition, the reconstruction mechanism does not involve an intermediate phase. The gas-phase rehydration and reconstruction was interrupted above 303 K. This is attributed to the poor wetting of the surface of the decomposed materials induced by hampered H(2)O adsorption above room temperature at the water vapor pressure applied. The Avrami-Erofe'ev model describes the reconstruction kinetics well.  相似文献   

12.
Using nanocrystalline [Mg-Al-CO3] and [Zn-Al-CO3] as precursors, [Mg-Al-PO4],[Zn-Al-PO4], [Mg-Al-P2O7] and [Zn-Al-P2O7] have been successfully synthesized by a direct reaction with the free PO4^3- or P2O7^4- using the microwave techniques and the anion-exchange method. And the samples thus obtained were characterized by TEM, FT-IR and XRD. The results show that the initial interlayer carbonate ions can be completely replaced by the free PO4^3- or P2O7^4- under controlled microwave conditions employed for a short time.  相似文献   

13.
The thermal decompositions of hydrotalcites with hexacyanoferrate(II) and hexacyanoferrate(III) in the interlayer have been studied using thermogravimetry combined with mass spectrometry. X-ray diffraction shows the hydrotalcites have a d(003) spacing of 11.1 and 10.9 Å which compares with a d-spacing of 7.9 and 7.98 Å for the hydrotalcite with carbonate or sulphate in the interlayer. XRD was also used to determine the products of the thermal decomposition. For the hydrotalcite decomposition the products were MgO, Fe2O3 and a spinel MgAl2O4. Dehydration and dehydroxylation take place in three steps each and the loss of cyanide ions in two steps.  相似文献   

14.
Zn-Al hydrotalcites and Cu-Al hydrotalcites were synthesised by coprecipitation method and analysed by X-ray diffraction (XRD) and thermal analysis coupled with mass spectroscopy. These methods provide a measure of the thermal stability of the hydrotalcite. The XRD patterns demonstrate similar patterns to that of the reference patterns but present impurities attributed to Zn(OH)2 and Cu(OH)2. The analysis shows that the d003 peak for the Zn-Al hydrotalcite gives a spacing in the interlayer of 7.59 ? and the estimation of the particle size by using the Debye-Scherrer equation and the width of the d003 peak is 590 ?. In the case of the Cu-Al hydrotalcite, the d003 spacing is 7.57 ? and the size of the diffracting particles was determined to be 225 ?. The thermal decomposition steps can be broken down into 4 sections for both of these hydrotalcites. The first step decomposition below 100°C is caused by the dehydration of some water absorbed. The second stage shows two major steps attributed to the dehydroxylation of the hydrotalcite. In the next stage, the gas CO2 is liberated over a temperature range of 150°C. The last reactions occur over 400°C and involved CO2 evolution in the decomposition of the compounds produced during the dehydroxylation of the hydrotalcite.  相似文献   

15.
The mechanism for the decomposition of hydrotalcite remains unsolved. Controlled rate thermal analysis enables this decomposition pathway to be explored. The thermal decomposition of hydrotalcites with hexacyanoferrate(II) and hexacyanoferrate(III) in the interlayer has been studied using controlled rate thermal analysis technology. X-ray diffraction shows the hydrotalcites have a d(003) spacing of 10.9 and 11.1 Å which compares with a d-spacing of 7.9 and 7.98 Å for the hydrotalcite with carbonate or sulphate in the interlayer. Calculations show dehydration with a total loss of 7 moles of water proving the formula of hexacyanoferrate(II) intercalated hydrotalcite is Mg6Al2(OH)16[Fe(CN)6]0.5·7H2O and 9.0 moles for the hexacyanoferrate(III) intercalated hydrotalcite with the formula of Mg6Al2(OH)16[Fe(CN)6]0.66·9H2O. CRTA technology indicates the partial collapse of the dehydrated mineral. Dehydroxylation combined with CN unit loss occurs in two isothermal stages at 377 and 390°C for the hexacyanoferrate(III) and in a single isothermal process at 374°C for the hexacyanoferrate(III) hydrotalcite.  相似文献   

16.
Hydrotalcites containing carbonate, vanadate and molybdate were prepared by coprecipitation. The resulting materials were characterized by XRD, and TG/DTA to determine the stability of the hydrotalcites synthesized. The thermal decomposition of carbonate hydrotalcites consist of two decomposition steps between 300 and 400°C, attributed to the simultaneous dehydroxylation and decarbonation of the hydrotalcite lattice. Water loss ascribed to dehydroxylation occurs in two decomposition steps, where the first step is due to the partial dehydroxylation of the lattice, while the second step is due to the loss of water interacting with the interlayer anions. Dehydroxylation results in the collapse of the hydrotalcite structure to that of its corresponding metal oxides, including MgO, Al2O3, MgAl2O4, NaMg4(VO4)3 and Na2Mg4(MoO4)5. The presence of oxy-anions proved to be beneficial in the stability of the hydrotalcite structure, shown by the delay in dehydroxylation of oxy-anion containing hydrotalcites compared to the carbonate hydrotalcite. This is due to the substantial amount of hydroxyl groups involved in a network of hydrogen bonds involving the intercalated anions. Therefore, the stability of the hydrotalcite structure appears to be dependent on the type of anion present in the interlayer. The order of thermal stability for the synthesized hydrotalcites in this study is Syn-HT-V>Syn-HT-Mo> Syn-HT-CO3-V>Syn-HT-CO3-Mo>Syn-HT-CO3. Carbonate containing hydrotalcites prove to be less stable than oxy-anion only hydrotalcites.  相似文献   

17.
Bayer hydrotalcites prepared using the seawater neutralisation (SWN) process of Bayer liquors are characterised using X-ray diffraction and thermal analysis techniques. The Bayer hydrotalcites are synthesised at four different temperatures (0, 25, 55, and 75 °C) to determine the effect of synthesis temperature on the thermal stability of the Bayer hydrotalcite structures and the mineralogical phases that form. The interlayer distance increased with increasing synthesis temperature, up to 55 °C, and then decreased by 0.14 Å for Bayer hydrotalcites prepared at 75 °C. The three mineralogical phases identified in this investigation are; (1) Bayer hydrotalcite, (2), calcium carbonate species, and (3) hydromagnesite. The DTG curve can be separated into four decomposition steps; (1) the removal of adsorbed water and free interlayer water in hydrotalcite (30–230 °C), (2) the dehydroxylation of hydrotalcite and the decarbonation of hydrotalcite (250–400 °C), (3) the decarbonation of hydromagnesite (400–550 °C), and (4) the decarbonation of aragonite (550–650 °C).  相似文献   

18.
含铜类水滑石催化材料热分解过程的研究   总被引:2,自引:0,他引:2  
共沉淀法合成了Cu0.13Mg0 6Al0.27(OH)2(CO3)0.135·xH2O类水滑石物质 (CuHTlc) ,采用XRD、DTA TG、BET、TEM和27AlMASNMR技术对其热分解过程进行了表征。结果表明 ,在较低焙烧温度时 (低于300℃ ),氢氧根和层间水部分脱除 ,但水滑石仍保持其层状结构 ;500℃时 ,其层状结构被完全破坏 ,出现氧化镁晶相结构 ,随着焙烧温度的进一步升高 ,尖晶石晶相生成。500℃时的焙烧产物具有最大比表面 (193m2·g-1)。当温度高于500℃ ,焙烧产物组成可表示为Cu0.13Mg0.6Al0.27O0.135,CuHTlc的热分解过程可表示为 :Cu0.13Mg0.6Al0.27(OH)2(CO3)0.135·xH2O→Cu0.13Mg0.6Al0.27O0.135 (1 x)H2O 0.135CO2。  相似文献   

19.
超分子结构水杨酸根插层水滑石的组装及结构与性能研究   总被引:26,自引:0,他引:26  
以锌铝水滑石ZnAl-CO3 LDHs为前体(主体),以乙二醇为分散介质,用离子 交换法组装了水杨酸根(客体)插层水滑石ZnAl-[o-HO(C6H4)COO]LDHs,并用XRD ,FT-IR,TG-DTA等手段对样品进行了表征。结果表明,能过控制离子交换条件, 水杨酸根阴离子可取代锌铝水滑石前体层间的CO3^2-离子,组装得到晶体结构良好 的水杨酸根插层水滑石。通过研究发现,主体水滑石层板与客体以静电力和氢键相 互作用,得到的超分子结构材料紫外阻隔作用增强并具有较好的稳定性,从而成为 一种集屏蔽和吸收双重功能的新型无机-有机得合紫外阻隔材料。  相似文献   

20.
层状前体镍铁水滑石及磁性材料的制备及表征   总被引:2,自引:0,他引:2  
周彤  李峰  战可涛  Evans D.G  段雪  张密林 《化学学报》2002,60(6):1078-1083
提出了利用镍铁水滑石作为磁性前体再经高温焙制备尖晶石型铁氧体思路,深 入研究了水滑石的制备工艺及结构性能并初步探讨了其焙烧后的磁学性能。由共沉 淀法合成了Ni/Fe摩尔比为2,3,4,6的镍铁水滑石,XRD结果表明镍铁比为3时晶 形较为理想,且随着晶化温度的升高及晶化时间的延长,水滑石的晶体结构规整性 增强。热重-差热结果显示镍铁水滑石的分解有两个过程,当镍铁比为3时,水滑石 的热稳定性相对最高。高温焙烧后的镍铁水滑石具有磁性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号