首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shuji Nakamura discovered p‐type doping in Gallium Nitride (GaN) and developed blue, green, and white “InGaN‐based” light emitting diodes (LEDs) and blue laser diodes (LDs). His inventions made possible energy efficient, solid‐state lighting systems and enabled the next generation of optical storage. In this biography, Shuji Nakamura tells the story of his personal life and his scientific career.

  相似文献   


2.
In the paper, for the Kerr field, we prove that Chandrasekhar's Dirac Hamiltonian and the self‐adjoint Hamiltonian with a flat scalar product of the wave functions are physically equivalent. Operators of transformation of Chandrasekhar's Hamiltonian and wave functions to the η representation with a flat scalar product are defined explicitly. If the domain of the wave functions of Dirac's equation in the Kerr field is bounded by two‐dimensional surfaces of revolution around the z axis, Chandrasekhar's Hamiltonian and the self‐adjoint Hamiltonian in the η representation are Hermitian with equality of the scalar products, .

  相似文献   


3.
Stefan W. Hell received the Nobel Prize in Chemistry in 2014 “for the development of super‐resolved fluorescence microscopy”, together with Eric Betzig and William Moerner. With the invention of STED (Stimulated Emission Depletion) microscopy experimentally realized in 1999, he has revolutionized light microscopy, overcoming the resolution limit of conventional optical microscopes – a breakthrough that has enabled new ground‐breaking discoveries in biological and medical research.

  相似文献   


4.
5.
Van der Waals heterostructures of graphene and hexagonal boron nitride feature a moiré superlattice for graphene's Dirac electrons. Here, we review the effects generated by this superlattice, including a specific miniband structure featuring gaps and secondary Dirac points, and a fractal spectrum of magnetic minibands known as Hofstadter's butterfly.

  相似文献   


6.
Topological singularity in a continuum theory of defects and a quantum field theory is studied from a viewpoint of differential geometry. The integrability conditions of singularity (Clairaut‐Schwarz‐Young theorem) are expressed by a torsion tensor and a curvature tensor when a Finslerian intrinsic parallelism holds for the multi‐valued function. In the context of the quantum field theory, the singularity called an extended object is expressed by the torsion when the intrinsic parallelism is related to the spontaneous breakdown of symmetry. In the continuum theory of defects, the path‐dependency of point and line defects within a crystal is interpreted by the non‐vanishing condition of torsion tensor in a non‐Riemannian space osculated from the Finsler space, and the domain is not simply connected. On the other hand, for the rotational singularity, an energy integral (J‐integral) around a disclination field is path‐independent when a nonlinear connection is single‐valued. This means that the topological expression for the sole defect (Gauss‐Bonnet theorem with genus ) is understood by the integrability of nonlinear connection.

  相似文献   


7.
A new type of photonic crystal (PC) named graded index (GRIN) PC was proposed by E. Centeno in 2005. It is obtained by appropriately modifying the parameters of a regular PC, thus resulting in gradual index variation. Many applications are inspired by this notion. This review will introduce different ways of designing GRIN PCs from both theoretical and experimental point of views. Some typical applications based on GRIN PCs are presented, followed by the focusing mechanism of GRIN PC.

  相似文献   


8.
Feng Peng 《Annalen der Physik》2015,527(5-6):402-407
We study the spin orientation of the neutron scattered by light‐irradiated graphene and calculate the average value of spin z‐component of the neutron in terms of a generating functional technique. Our calculation results indicate that there is a remarkable neutron polarization effect when a neutron penetrates graphene irradiated by a circularly polarized light. We analyse the dynamical source of generating this effect from the aspect of photon‐mediated interaction between the neutron spin and valley pseudospin. By comparing with the polarization induced by a magnetic field, we find that this polarization may be equivalent to the one led by a magnetic field of several hundred Teslas if the photon frequency is in the X‐ray frequency range. This provides an approach of polarizing neutrons.

  相似文献   


9.
In modern Kaluza‐Klein theories which successfully unify gravity, electromagnetism and a scalar field, null geodesics in five dimensions lead to simplified expressions for phase shifts in four‐dimensional spacetime. It might be possible to test for an extra dimension by experiments such as those where neutron interferometry is used to measure the Aharonov‐Bohm effect.

  相似文献   


10.
Surface phonon cavities that are homogenous in both mechanical and dielectric properties are reported. The cavities are formed by the placement of a defect of a single domain within periodic domain inversion of single crystal piezoelectric lithium niobate that exhibits surface phononic bandgap through the phonon‐polariton coupling. Surface cavity resonances are observed within the bandgap, which manifest in entrapment of phonon‐polariton within the defect. In addition to demonstrating that the observed resonances are non‐radiative and decoupled to bulk radiation, which is critical for high Q cavities, it is also shown the possibility to tune the surface cavity resonance spectra simply by varying the defect width. Such an ability to excite surface cavity resonance that is non‐radiative with simultaneous localization of the electric field together with the advantage of a cavity that is physically formed from a completely monolithic and uniform material offers unique opportunities for widespread applications for example in actuation, detection, and phonon lasing that can be fully integrated with other physical systems such as quantum acoustics, photonics, and microfluidics.

  相似文献   


11.
The circular dichroism of titanium‐doped silver chiral nanorod arrays grown using the glancing angle deposition (GLAD) method is investigated in the visible and near infrared ranges using transmission ellipsometry and spectroscopy. These films are found to have significant circular polarization effects across broad ranges of the visible to NIR spectrum, including large values for optical rotation. The characteristics of these circular polarization effects are strongly influenced by the morphology of the deposited arrays. Thus, the morphological control of the optical activity in these nanostructures demonstrates significant optimization capability of the GLAD technique for fabricating chiral plasmonic materials.

  相似文献   


12.
A new model of nonlinear electrodynamics with three parameters is suggested and investigated. It is shown that if the external constant magnetic field is present the phenomenon of vacuum birefringence takes place. The indices of refraction for two polarizations of electromagnetic waves, parallel and perpendicular to the magnetic induction field are calculated. The electric field of a point‐like charge is not singular at the origin and the static electric energy is finite. We have calculated the static electric energy of point‐like particles for different parameters of the model. The canonical and symmetrical Belinfante energy‐momentum tensors and dilatation current are obtained. We demonstrate that the dilatation symmetry and dual symmetry are broken in the model suggested.

  相似文献   


13.
The interest to mesoscale dielectric objects, whose effective dimensions are comparable with the incident radiation wavelength, is caused by their unique ability to modify the spatial structure of the incident wave in the specific manner and to produce a highly localized intensive optical flux (“photonic jet”) with the subwavelength spatial resolution. In the current paper we brief review the modern state‐of‐the‐art of main principles of the photonic jet formation by non‐spherical and non‐symmetrical dielectric mesoscale particles both in transmitting and reflection mode. A deeper understanding of the photonic jet is nevertheless needed to fully exploit the potential performance of nano‐ and micro‐ dielectric mesoscale objects as diffractive components at different wavebands.

  相似文献   


14.
We investigate the Plebański class of electrodynamical theories, i.e., theories of nonlinear vacuum electrodynamics that derive from a Lorentz‐invariant Lagrangian (or Hamiltonian). In any such theory the light rays are the lightlike geodesics of two optical metrics that depend on the electromagnetic background field. A set of necessary and sufficient conditions is found whose fulfillment secures that the optical metrics are causal in the sense that the light rays are lightlike or timelike with respect to the underlying space‐time metric. Thereupon we derive conditions on the Lagrangian, or the Hamiltonian, of the theory such that the causality conditions are satisfied for all allowed background fields. (The allowed values of the field strength tensor are those for which the excitation tensor is finite and real.) The general results are illustrated with several examples.

  相似文献   


15.
A theoretical analysis of the resonance fluorescence of a two‐level atom in a classical monochromatic field with feedback phase switching depending on the fluorescence triplet component which the last spontaneously emitted photon belongs to is presented. The considered feedback loop is a hybrid quantum‐classical system. Statistics of photoemissions into the triplet components is investigated as well as correlations between the components. In contrast to the well‐known resonance fluorescence of a two‐level atom without feedback phase switching, a bunching of photocounts is predicted in each side‐band, and successive photoemissions into different side‐bands manifest antibunching. The type of the statistics can efficiently be controlled by the frequency detuning of the external field. In many points the considered feedback scheme provides drastically different statistical features of fluorescence when compared with the scheme of frequency‐unselective feedback phase switching.

  相似文献   


16.
In fiber lasers, the study of the cubic‐quintic complex Ginzburg‐Landau equations (CGLE) has attracted much attention. In this paper, four families (kink solitons, gray solitons, Y‐type solitons and combined solitons) of exact soliton solutions for the variable‐coefficient cubic‐quintic CGLE are obtained via the modified Hirota method. Appropriate parameters are chosen to investigate the properties of solitons. The influences of nonlinearity and spectral filtering effect are discussed in these obtained exact soliton solutions, respectively. Methods to amplify the amplitude and compress the width of solitons are put forward. Numerical simulation with split‐step Fourier method and fourth‐order Runge‐Kutta algorithm are carried out to validate some of the analytic results. Transformation from the variable‐coefficient cubic‐quintic CGLE to the constant coefficients one is proposed. The results obtained may have certain applications in soliton control in fiber lasers, and may have guiding value in experiments in the future.

  相似文献   


17.
A possible scenario of the Lorentz symmetry violation is discussed based on the arising of geometric quantum phases yielded by the effects of the Lorentz symmetry violation in the CPT‐even gauge sector of Standard Model Extension. Analogues of the Anandan quantum phase and the scalar Aharonov‐Bohm effect for a neutral particle [J. Anandan, Phys. Lett. A 138 , 347 (1989)] are obtained from the parity‐odd sector of the tensor . Moreover, we build quantum holonomies associated with the analogue of the Anandan quantum phase and discuss a possible analogy with the geometric quantum computation [A. Ekert et al., J. Mod. Opt. 47 , 2501 (2000)].

  相似文献   


18.
The so‐called Jackiw–Pi (JP) model for massive vector fields is a three‐dimensional, gauge‐invariant and parity‐preserving model that was discussed in several contexts. In this paper we have discussed its quantum aspects through the introduction of Planck‐scale objects, i.e., via noncommutativity and the well‐known BV quantization. Namely, we have constructed the JP noncommutative space‐time version, we have provided the BV quantization of the commutative JP model and we have discussed its features. The noncommutativity has introduced interesting new objects in JP's Planck‐scale framework.

  相似文献   


19.
The quantum dynamics of a moving particle with a magnetic quadrupole moment that interacts with electric and magnetic fields is introduced. Then, it is discussed which conditions the external fields must satisfy so that an analogue of the Landau quantization can be obtained. Finally, by dealing with the lowest Landau level associated with the magnetic quadrupole system, an analogue of the quantum Hall conductivity is obtained.

  相似文献   


20.
In this article a particular solution of Heun equation is derived by making use of the Nikiforov‐Uvarov (NU) method which provides exact solutions for general hypergeometric equation and eigenvalues together with eigenfunctions of the Heun equation for this particular solution are obtained. One to one correspondence (isomorphism) of the aforesaid equation with the radial Schrödinger equation is emphasized and also physical counterparts of the parameters in this equation are put forward by introducing solutions for two different potential functions (Hulthen and Woods‐Saxon potentials).

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号