首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It was previously argued that the phenomenon of quantum gravitational decoherence described by the Wheeler‐DeWitt equation is responsible for the emergence of the arrow of time. Here we show that the characteristic spatio‐temporal scales of quantum gravitational decoherence are typically logarithmically larger than a characteristic curvature radius of the background space‐time. This largeness is a direct consequence of the fact that gravity is a non‐renormalizable theory, and the corresponding effective field theory is nearly decoupled from matter degrees of freedom in the physical limit . Therefore, as such, quantum gravitational decoherence is too ineffective to guarantee the emergence of the arrow of time and the “quantum‐to‐classical” transition to happen at scales of physical interest. We argue that the emergence of the arrow of time is directly related to the nature and properties of physical observer.

  相似文献   


2.
We determine the regularized van der Waals contribution to pressure within a spherical cavity of vapor in a homogeneous, isotropic, infinite medium. The spherical Hamaker function, , has been defined, for the first time, in contrast to the conventional Hamaker function for planar surfaces, . For the materials under consideration, the pressure inside the cavity varies as , where a is the radius of the cavity. For radii below a transition radius, the surface energy (or surface tension) becomes size dependent and could have important implications for homogeneous nucleation of nanosized bubbles in liquids, as well as cavitation of bubbles.

  相似文献   


3.
In this article a particular solution of Heun equation is derived by making use of the Nikiforov‐Uvarov (NU) method which provides exact solutions for general hypergeometric equation and eigenvalues together with eigenfunctions of the Heun equation for this particular solution are obtained. One to one correspondence (isomorphism) of the aforesaid equation with the radial Schrödinger equation is emphasized and also physical counterparts of the parameters in this equation are put forward by introducing solutions for two different potential functions (Hulthen and Woods‐Saxon potentials).

  相似文献   


4.
The intrinsic lattice thermal conductivity of MoS2 is an important aspect in the design of MoS2‐based nanoelectronic devices. We investigate the lattice dynamics properties of MoS2 by first‐principle calculations. The intrinsic thermal conductivity of single‐layer MoS2 is calculated using the Boltzmann transport equation for phonons. The obtained thermal conductivity agrees well with the measurements. The contributions of acoustic and optical phonons to the lattice thermal conductivity are evaluated. The size dependence of thermal conductivity is investigated as well.

  相似文献   


5.
Isamu Akasaki is known for inventing the bright gallium nitride (GaN) p‐n junction blue LED in 1989 and subsequently the high‐brightness GaN blue LED. Together with Shuji Nakamura and Hiroshi Amano, he is one of the three recipients of the 2014 Nobel Prize in Physics. In his Nobel Lecture, he describes the historical progress that led to the invention of the first p‐n junction blue/UV LED and related optical devices. ***

  相似文献   


6.
Classes of solvable potentials are presented within an standard application of supersymmetric quantum mechanics. Sets of exceptional orthogonal polynomials generated by these solvable potentials are introduced and examined in detail. Several properties of these polynomials including orthogonality conditions, weight functions, differential equations, the Wronskains, possible recurrence relations are also investigated.

  相似文献   


7.
A single spin‐1/2 particle obeys the Dirac equation in spatial dimension and is bound by an attractive central monotone potential which vanishes at infinity (in one dimension the potential is even). This work refines the relativistic comparison theorems which were derived by Hall 1 . The new theorems allow the graphs of the two comparison potentials and to crossover in a controlled way and still imply the spectral ordering for the eigenvalues at the bottom of each angular momentum subspace. More specifically in a simplest case we have: in dimension , if , then ; and in dimensions, if , where and , then .

  相似文献   


8.
A possible scenario of the Lorentz symmetry violation is discussed based on the arising of geometric quantum phases yielded by the effects of the Lorentz symmetry violation in the CPT‐even gauge sector of Standard Model Extension. Analogues of the Anandan quantum phase and the scalar Aharonov‐Bohm effect for a neutral particle [J. Anandan, Phys. Lett. A 138 , 347 (1989)] are obtained from the parity‐odd sector of the tensor . Moreover, we build quantum holonomies associated with the analogue of the Anandan quantum phase and discuss a possible analogy with the geometric quantum computation [A. Ekert et al., J. Mod. Opt. 47 , 2501 (2000)].

  相似文献   


9.
In the paper, for the Kerr field, we prove that Chandrasekhar's Dirac Hamiltonian and the self‐adjoint Hamiltonian with a flat scalar product of the wave functions are physically equivalent. Operators of transformation of Chandrasekhar's Hamiltonian and wave functions to the η representation with a flat scalar product are defined explicitly. If the domain of the wave functions of Dirac's equation in the Kerr field is bounded by two‐dimensional surfaces of revolution around the z axis, Chandrasekhar's Hamiltonian and the self‐adjoint Hamiltonian in the η representation are Hermitian with equality of the scalar products, .

  相似文献   


10.
11.
Van der Waals heterostructures of graphene and hexagonal boron nitride feature a moiré superlattice for graphene's Dirac electrons. Here, we review the effects generated by this superlattice, including a specific miniband structure featuring gaps and secondary Dirac points, and a fractal spectrum of magnetic minibands known as Hofstadter's butterfly.

  相似文献   


12.
We investigate the Plebański class of electrodynamical theories, i.e., theories of nonlinear vacuum electrodynamics that derive from a Lorentz‐invariant Lagrangian (or Hamiltonian). In any such theory the light rays are the lightlike geodesics of two optical metrics that depend on the electromagnetic background field. A set of necessary and sufficient conditions is found whose fulfillment secures that the optical metrics are causal in the sense that the light rays are lightlike or timelike with respect to the underlying space‐time metric. Thereupon we derive conditions on the Lagrangian, or the Hamiltonian, of the theory such that the causality conditions are satisfied for all allowed background fields. (The allowed values of the field strength tensor are those for which the excitation tensor is finite and real.) The general results are illustrated with several examples.

  相似文献   


13.
In modern Kaluza‐Klein theories which successfully unify gravity, electromagnetism and a scalar field, null geodesics in five dimensions lead to simplified expressions for phase shifts in four‐dimensional spacetime. It might be possible to test for an extra dimension by experiments such as those where neutron interferometry is used to measure the Aharonov‐Bohm effect.

  相似文献   


14.
Shuji Nakamura discovered p‐type doping in Gallium Nitride (GaN) and developed blue, green, and white “InGaN‐based” light emitting diodes (LEDs) and blue laser diodes (LDs). His inventions made possible energy efficient, solid‐state lighting systems and enabled the next generation of optical storage. In this biography, Shuji Nakamura tells the story of his personal life and his scientific career.

  相似文献   


15.
O. Olendski 《Annalen der Physik》2016,528(11-12):865-881
Information‐theoretical concepts are employed for the analysis of the interplay between a transverse electric field applied to a one‐dimensional surface and Robin boundary condition (BC), which with the help of the extrapolation length Λ zeroes at the interface a linear combination of the quantum mechanical wave function and its spatial derivative, and its influence on the properties of the structure. For doing this, exact analytical solutions of the corresponding Schrödinger equation are derived and used for calculating energies, dipole moments, position and momentum quantum information entropies and their Fisher information and and Onicescu information energies and counterparts. It is shown that the weak (strong) electric field changes the Robin wall into the Dirichlet, (Neumann, ), surface. This transformation of the energy spectrum and associated waveforms in the growing field defines an evolution of the quantum‐information measures; for example, it is proved that for the Dirichlet and Neumann BCs the position (momentum) quantum information entropy varies as a positive (negative) natural logarithm of the electric intensity what results in their field‐independent sum . Analogously, at and the position and momentum Fisher informations (Onicescu energies) depend on the applied voltage as () and its inverse, respectively, leading to the field‐independent product (). Peculiarities of their transformations at the finite nonzero Λ are discussed and similarities and differences between the three quantum‐information measures in the electric field are highlighted with the special attention being paid to the configuration with the negative extrapolation length.

  相似文献   


16.
A new type of photonic crystal (PC) named graded index (GRIN) PC was proposed by E. Centeno in 2005. It is obtained by appropriately modifying the parameters of a regular PC, thus resulting in gradual index variation. Many applications are inspired by this notion. This review will introduce different ways of designing GRIN PCs from both theoretical and experimental point of views. Some typical applications based on GRIN PCs are presented, followed by the focusing mechanism of GRIN PC.

  相似文献   


17.
Stefan W. Hell received the Nobel Prize in Chemistry in 2014 “for the development of super‐resolved fluorescence microscopy”, together with Eric Betzig and William Moerner. With the invention of STED (Stimulated Emission Depletion) microscopy experimentally realized in 1999, he has revolutionized light microscopy, overcoming the resolution limit of conventional optical microscopes – a breakthrough that has enabled new ground‐breaking discoveries in biological and medical research.

  相似文献   


18.
Analytical solutions of the Schrödinger equation for the one‐dimensional quantum well with all possible permutations of the Dirichlet and Neumann boundary conditions (BCs) in perpendicular to the interfaces uniform electric field are used for the comparative investigation of their interaction and its influence on the properties of the system. Limiting cases of the weak and strong voltages allow an easy mathematical treatment and its clear physical explanation; in particular, for the small , the perturbation theory derives for all geometries a linear dependence of the polarization on the field with the BC‐dependent proportionality coefficient being positive (negative) for the ground (excited) states. Simple two‐level approximation elementary explains the negative polarizations as a result of the field‐induced destructive interference of the unperturbed modes and shows that in this case the admixture of only the neighboring states plays a dominant role. Different magnitudes of the polarization for different BCs in this regime are explained physically and confirmed numerically. Hellmann‐Feynman theorem reveals a fundamental relation between the polarization and the speed of the energy change with the field. It is proved that zero‐voltage position entropies are BC independent and for all states but the ground Neumann level (which has ) are equal to while the momentum entropies depend on the edge requirements and the level. Varying electric field changes position and momentum entropies in the opposite directions such that the entropic uncertainty relation is satisfied. Other physical quantities such as the BC‐dependent zero‐energy and zero‐polarization fields are also studied both numerically and analytically. Applications to different branches of physics, such as ocean fluid dynamics and atmospheric and metallic waveguide electrodynamics, are discussed.

  相似文献   


19.
Topological singularity in a continuum theory of defects and a quantum field theory is studied from a viewpoint of differential geometry. The integrability conditions of singularity (Clairaut‐Schwarz‐Young theorem) are expressed by a torsion tensor and a curvature tensor when a Finslerian intrinsic parallelism holds for the multi‐valued function. In the context of the quantum field theory, the singularity called an extended object is expressed by the torsion when the intrinsic parallelism is related to the spontaneous breakdown of symmetry. In the continuum theory of defects, the path‐dependency of point and line defects within a crystal is interpreted by the non‐vanishing condition of torsion tensor in a non‐Riemannian space osculated from the Finsler space, and the domain is not simply connected. On the other hand, for the rotational singularity, an energy integral (J‐integral) around a disclination field is path‐independent when a nonlinear connection is single‐valued. This means that the topological expression for the sole defect (Gauss‐Bonnet theorem with genus ) is understood by the integrability of nonlinear connection.

  相似文献   


20.
We present a general methodology for electromagnetic homogenization and characterization of bianisotropic metasurfaces formed by regular or random arrangements of small arbitrary inclusions at interfaces of two different isotropic media. The approach unites and generalizes the earlier theories developed independently by two joint research groups: that of profs. Holloway and Kuester and that of profs. Simovski and Tretyakov. We analyze the features of both formalisms and discuss their peculiarities in several example cases. Our theory can be used in the analysis and synthesis of a wide spectrum of metasurfaces.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号