首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
Shuji Nakamura discovered p‐type doping in Gallium Nitride (GaN) and developed blue, green, and white “InGaN‐based” light emitting diodes (LEDs) and blue laser diodes (LDs). His inventions made possible energy efficient, solid‐state lighting systems and enabled the next generation of optical storage. In this biography, Shuji Nakamura tells the story of his personal life and his scientific career.

  相似文献   


2.
Stefan W. Hell received the Nobel Prize in Chemistry in 2014 “for the development of super‐resolved fluorescence microscopy”, together with Eric Betzig and William Moerner. With the invention of STED (Stimulated Emission Depletion) microscopy experimentally realized in 1999, he has revolutionized light microscopy, overcoming the resolution limit of conventional optical microscopes – a breakthrough that has enabled new ground‐breaking discoveries in biological and medical research.

  相似文献   


3.
Single crystalline LiAlO is known as a very poor ion conductor. Thus, in its crystalline form it unequivocally disqualifies itself from being a powerful solid electrolyte in modern energy storage systems. On the other hand, its interesting crystal structure proves beneficial to sharpen our understanding of Li ion dynamics in solids which in return might influence application‐oriented research. LiAlO allows us to apply and test techniques that are sensitive to extremely slow Li ion dynamics. This helps us clarifying their diffusion behaviour from a fundamental point of view. Here, we combined two techniques to follow Li ion translational hopping in LiAlO that can be described by the same physical formalism: dynamic mechanical relaxation and electrical relaxation, i.e., ionic conductivity measurements. Via both methods we were able to track the same transport mechanism in LiAlO. Moreover, this enabled us to directly probe extremely slow Li exchange rates at temperatures slightly above 430 K. The results were compared with recent insights from nuclear magnetic resonance spectroscopy. Altogether, an Arrhenius‐type Li diffusion process with an activation energy of ca. 1.12 eV was revealed over a large dynamic range covering 10 orders of magnitude, i.e., spanning a dynamic range from the nano‐second time scale down to the second time scale.

  相似文献   


4.
Ultracold Fermi molecules lying in 2D square optical lattices bilayers with its dipole moment perpendicularly aligned to the layers, having interlayer finite range s‐wave interactions, are shown to form superfluid phases, both, in the Bardeen, Cooper and Schrieffer (BCS) regime of Cooper pairs, and in the condensate regime of bound dimeric molecules. We demonstrate this result using a functional integral scheme within the Ginzburg‐Landau theory. For the deep Berezinskii‐Kosterlitz‐Thouless (BKT) phase transition, we predict critical temperatures around 5nK and 20nK for 23Na40K and OH molecules, which are within reach of current experiments [J. W. Park, S. Will and M. Zwierlein, Phys. Rev. Lett. 114 , 205302 (2015)].

  相似文献   


5.
Uncertainties in successive measurements of general canonically conjugate variables are examined. Such operators are approached within a limiting procedure of the Pegg–Barnett type. Dealing with unbounded observables, we should take into account a finiteness of detector resolution. An appropriate reformulation of two scenarios of successive measurements is proposed and motivated. Uncertainties are characterized by means of generalized entropies of both the Rényi and Tsallis types. The Rényi and Tsallis formulations of uncertainty relations are obtained for both the scenarios of successive measurements of canonically conjugate operators. Entropic uncertainty relations for the cases of position and momentum are separately discussed.

  相似文献   


6.
Quantum uncertainties in position, momentum and phase‐space are studied in the confined Harmonic Oscillator. Standard deviations and Shannon entropies are used to quantify these uncertainties and their behaviors are compared and contrasted. We observe a minimum in the momentum space Shannon entropy as the box length is increased, a feature that is not present in the momentum space standard deviation. The behaviors of the standard deviation product and the Shannon entropy sum, which form the basis of uncertainty relationships, are also analyzed. Maxima are observed in the product as the box length increases in sharp contrast to the entropy sum. The relationship between these behaviors and that of the Shannon entropy of the phase‐space Wigner function is analyzed and discussed. An analysis of the energetic components is also performed. The results reinforce the idea that the confined Harmonic Oscillator can be considered as an intermediate model which interpolates between the Particle in a Box Model and the Harmonic Oscillator and thus contains characteristics of both models.

  相似文献   


7.
Topological singularity in a continuum theory of defects and a quantum field theory is studied from a viewpoint of differential geometry. The integrability conditions of singularity (Clairaut‐Schwarz‐Young theorem) are expressed by a torsion tensor and a curvature tensor when a Finslerian intrinsic parallelism holds for the multi‐valued function. In the context of the quantum field theory, the singularity called an extended object is expressed by the torsion when the intrinsic parallelism is related to the spontaneous breakdown of symmetry. In the continuum theory of defects, the path‐dependency of point and line defects within a crystal is interpreted by the non‐vanishing condition of torsion tensor in a non‐Riemannian space osculated from the Finsler space, and the domain is not simply connected. On the other hand, for the rotational singularity, an energy integral (J‐integral) around a disclination field is path‐independent when a nonlinear connection is single‐valued. This means that the topological expression for the sole defect (Gauss‐Bonnet theorem with genus ) is understood by the integrability of nonlinear connection.

  相似文献   


8.
A theoretical analysis of the resonance fluorescence of a two‐level atom in a classical monochromatic field with feedback phase switching depending on the fluorescence triplet component which the last spontaneously emitted photon belongs to is presented. The considered feedback loop is a hybrid quantum‐classical system. Statistics of photoemissions into the triplet components is investigated as well as correlations between the components. In contrast to the well‐known resonance fluorescence of a two‐level atom without feedback phase switching, a bunching of photocounts is predicted in each side‐band, and successive photoemissions into different side‐bands manifest antibunching. The type of the statistics can efficiently be controlled by the frequency detuning of the external field. In many points the considered feedback scheme provides drastically different statistical features of fluorescence when compared with the scheme of frequency‐unselective feedback phase switching.

  相似文献   


9.
Information‐based uncertainty measures like Shannon entropy, Onicescu energy and Fisher information (in position and momentum space) are employed to understand the effect of symmetric and asymmetric confinement in a quantum harmonic oscillator. Also, the transformation of the Hamiltonian into a dimensionless form gives an idea of the composite effect of force constant and confinement length (xc). In the symmetric case, a wide range of xc has been taken up, whereas asymmetric confinement is dealt with by shifting the minimum of the potential from the origin keeping box length and boundary fixed. Eigenvalues and eigenvectors for these systems are obtained quite accurately via an imaginary‐time propagation scheme. For asymmetric confinement, a variation‐induced exact diagonalization procedure is also introduced, which produces very high quality results. One finds that, in symmetric confinement, after a certain characteristic xc, all these properties converge to respective values of a free harmonic oscillator. In the asymmetric situation, excited‐state energies always pass through a maximum. For this potential, the classical turning point decreases, whereas well depth increases with the strength of asymmetry. A study of these uncertainty measures reveals that localization increases with an increase of the asymmetry parameter.

  相似文献   


10.
Van der Waals heterostructures of graphene and hexagonal boron nitride feature a moiré superlattice for graphene's Dirac electrons. Here, we review the effects generated by this superlattice, including a specific miniband structure featuring gaps and secondary Dirac points, and a fractal spectrum of magnetic minibands known as Hofstadter's butterfly.

  相似文献   


11.
In this article a particular solution of Heun equation is derived by making use of the Nikiforov‐Uvarov (NU) method which provides exact solutions for general hypergeometric equation and eigenvalues together with eigenfunctions of the Heun equation for this particular solution are obtained. One to one correspondence (isomorphism) of the aforesaid equation with the radial Schrödinger equation is emphasized and also physical counterparts of the parameters in this equation are put forward by introducing solutions for two different potential functions (Hulthen and Woods‐Saxon potentials).

  相似文献   


12.
Nonlinear optical microscopy (NLOM) relies on nonlinear light–matter interactions to provide images from larger depths within biological structures compared to conventional confocal fluorescence microscopy. These nonlinear light–matter interactions include multiphoton excitation fluorescence (MPEF), second‐harmonic generation (SHG), coherent anti‐Stokes Raman scattering (CARS), and stimulated Raman scattering (SRS). This review discusses the theories of and instrumentation for various NLOM techniques, with a particular focus on endogenous signals and exogenous probes. These signals and probes expand the breadth of information that optical imaging can provide. We also discuss the application of NLOM in biomedical research, including tissue engineering, drug delivery and clinical diagnostics. Current technological limitations are also discussed.

  相似文献   


13.
The circular dichroism of titanium‐doped silver chiral nanorod arrays grown using the glancing angle deposition (GLAD) method is investigated in the visible and near infrared ranges using transmission ellipsometry and spectroscopy. These films are found to have significant circular polarization effects across broad ranges of the visible to NIR spectrum, including large values for optical rotation. The characteristics of these circular polarization effects are strongly influenced by the morphology of the deposited arrays. Thus, the morphological control of the optical activity in these nanostructures demonstrates significant optimization capability of the GLAD technique for fabricating chiral plasmonic materials.

  相似文献   


14.
A new type of photonic crystal (PC) named graded index (GRIN) PC was proposed by E. Centeno in 2005. It is obtained by appropriately modifying the parameters of a regular PC, thus resulting in gradual index variation. Many applications are inspired by this notion. This review will introduce different ways of designing GRIN PCs from both theoretical and experimental point of views. Some typical applications based on GRIN PCs are presented, followed by the focusing mechanism of GRIN PC.

  相似文献   


15.
O. Olendski 《Annalen der Physik》2016,528(11-12):865-881
Information‐theoretical concepts are employed for the analysis of the interplay between a transverse electric field applied to a one‐dimensional surface and Robin boundary condition (BC), which with the help of the extrapolation length Λ zeroes at the interface a linear combination of the quantum mechanical wave function and its spatial derivative, and its influence on the properties of the structure. For doing this, exact analytical solutions of the corresponding Schrödinger equation are derived and used for calculating energies, dipole moments, position and momentum quantum information entropies and their Fisher information and and Onicescu information energies and counterparts. It is shown that the weak (strong) electric field changes the Robin wall into the Dirichlet, (Neumann, ), surface. This transformation of the energy spectrum and associated waveforms in the growing field defines an evolution of the quantum‐information measures; for example, it is proved that for the Dirichlet and Neumann BCs the position (momentum) quantum information entropy varies as a positive (negative) natural logarithm of the electric intensity what results in their field‐independent sum . Analogously, at and the position and momentum Fisher informations (Onicescu energies) depend on the applied voltage as () and its inverse, respectively, leading to the field‐independent product (). Peculiarities of their transformations at the finite nonzero Λ are discussed and similarities and differences between the three quantum‐information measures in the electric field are highlighted with the special attention being paid to the configuration with the negative extrapolation length.

  相似文献   


16.
In fiber lasers, the study of the cubic‐quintic complex Ginzburg‐Landau equations (CGLE) has attracted much attention. In this paper, four families (kink solitons, gray solitons, Y‐type solitons and combined solitons) of exact soliton solutions for the variable‐coefficient cubic‐quintic CGLE are obtained via the modified Hirota method. Appropriate parameters are chosen to investigate the properties of solitons. The influences of nonlinearity and spectral filtering effect are discussed in these obtained exact soliton solutions, respectively. Methods to amplify the amplitude and compress the width of solitons are put forward. Numerical simulation with split‐step Fourier method and fourth‐order Runge‐Kutta algorithm are carried out to validate some of the analytic results. Transformation from the variable‐coefficient cubic‐quintic CGLE to the constant coefficients one is proposed. The results obtained may have certain applications in soliton control in fiber lasers, and may have guiding value in experiments in the future.

  相似文献   


17.
Repulsive gravity is not very popular in physics. However, one comes across it in at least two main occurrences in general relativity: in the negative‐r region of Kerr spacetime, and as the result of the gravitational interaction between matter and antimatter, when the latter is assumed to be CPT‐transformed matter. Here we show how these two independent developments of general relativity are perfectly consistent in predicting gravitational repulsion and how the above Kerr negative‐r region can be interpreted as the habitat of antimatter. As a consequence, matter particles traveling along vortical geodesics can pass through the throat of a rotating black hole and emerge as antimatter particles (and vice versa). An experimental definitive answer on the gravitational behavior of antimatter is awaited in the next few years.

  相似文献   


18.
We consider a universe with a bulk viscous cosmic fluid, in a flat Friedmann‐Lemaitre‐Robertson‐Walker geometry. We derive the conditions for the existence of inflation, and those which at the same time prevent the occurrence of self‐reproduction. Our theoretical model gives results which are in perfect agreement with the most recent data from the PLANCK surveyor.

  相似文献   


19.
Single neutral atom mechanics is controllable by focused, high‐intensity optical vortices. The intensity‐dependent, laser‐driven motion of the atom's active electrons subsumes to a net transfer of the orbital angular momentum of the light to the neutral atom. The ponderomotive force on these electrons translates so into an unbounded or a bounded radial drift of the atom depending on its initial kinetic energy, as set by the temperature. Appropriate combination of laser beams results in sub‐wavelength, dynamical radial traps for tweezing atoms controllably, an effect that can be exploited for atom guiding, structuring, and lithographic applications.

  相似文献   


20.
In modern Kaluza‐Klein theories which successfully unify gravity, electromagnetism and a scalar field, null geodesics in five dimensions lead to simplified expressions for phase shifts in four‐dimensional spacetime. It might be possible to test for an extra dimension by experiments such as those where neutron interferometry is used to measure the Aharonov‐Bohm effect.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号