首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A rapid detection protocol suitable for use by first-responders to detect anthrax spores using a low-cost, battery-powered, portable Raman spectrometer has been developed. Bacillus subtilis spores, harmless simulants for Bacillus anthracis, were studied using surface-enhanced Raman spectroscopy (SERS) on silver film over nanosphere (AgFON) substrates. Calcium dipicolinate (CaDPA), a biomarker for bacillus spores, was efficiently extracted by sonication in nitric acid and rapidly detected by SERS. AgFON surfaces optimized for 750 nm laser excitation have been fabricated and characterized by UV-vis diffuse reflectance spectroscopy and SERS. The SERS signal from extracted CaDPA was measured over the spore concentration range of 10(-14)-10(-12) M to determine the saturation binding capacity of the AgFON surface and to calculate the adsorption constant (Kspore=1.7 x 10(13) M(-1)). At present, an 11 min procedure is capable of achieving a limit of detection (LOD) of approximately 2.6 x 10(3) spores, below the anthrax infectious dose of 10(4) spores. The data presented herein also demonstrate that the shelf life of prefabricated AgFON substrates can be as long as 40 days prior to use. Finally, these sensing capabilities have been successfully transitioned from a laboratory spectrometer to a field-portable instrument. Using this technology, 10(4) bacillus spores were detected with a 5 s data acquisition period on a 1 month old AgFON substrate. The speed and sensitivity of this SERS sensor indicate that this technology can be used as a viable option for the field analysis of potentially harmful environmental samples.  相似文献   

2.
A new method to stabilize and functionalize surfaces for surface-enhanced Raman spectroscopy (SERS) is demonstrated. Atomic layer deposition (ALD) is used to deposit a sub-1-nm alumina layer on silver film-over-nanosphere (AgFON) substrates. The resulting overlayer maintains and stabilizes the SERS activity of the underlying silver while presenting the surface chemistry of the alumina overlayer, a commonly used polar adsorbent in chromatographic separations. The relative affinity of analytes for alumina-modified AgFON substrates can be determined by their polarity. On the basis of SERS measurements, dipicolinic acid displays the strongest binding to the ALD alumina-modified AgFON among a set of pyridine derivatives with varying polarity. This strong affinity for carboxylate groups makes the SERS substrate an ideal candidate for bacillus spores detection using the dipicolinate biomarker. The SERS signal from extracted dipicolinate was measured over the spore concentration range 10(-14)-10(-12) M to determine the saturation binding capacity of the alumina-modified AgFON surface. The adsorption constant was determined to be Kspore = 9.0 x 10(13) M(-1). A 10-s data collection time is capable of achieving a limit of detection of approximately 1.4 x 10(3) spores. The shelf life of prefabricated substrates is at least 9 months prior to use. In comparison to the bare AgFON substrates, the ALD-modified AgFON substrates demonstrate twice the sensitivity with 6 times shorter data acquisition time and 7 times longer temporal stability. ALD expands the palette of available chemical methods to functionalize SERS substrates, which will enable improved and diverse chemical control over the nature of analyte-surface binding for biomedical, homeland security, and environmental applications.  相似文献   

3.
等离子体金属(金、银)纳米结构因其特有的理化性能,被广泛应用于表面增强拉曼散射(Surface-enhanced Raman scattering,SERS)传感及可穿戴应力传感领域。其中,SERS是一种应用贵金属纳米材料增强拉曼散射信号的检测技术,该技术灵敏度高、特异性强,已被广泛用于生物医学、环境监测、食品药品检测等领域。随着电子检测技术和柔性电子材料的快速发展,柔性可穿戴传感技术也得到了快速发展,且取得了大量的研究成果。SERS检测技术主要依赖于贵金属纳米增强基底材料,而基于贵金属纳米结构的可穿戴传感元件对人体微应力、微应变的传感具有极高的灵敏度。SERS增强基底材料与可穿戴应力传感元件材料具有互通互用性,将贵金属纳米SERS基底应用于柔性可穿戴式检测,这是SERS检测技术比较新颖的、尚未深入研究的应用领域之一。该文综述了贵金属溶胶纳米结构的材料组成分类以及该类材料在SERS和可穿戴应力传感中的应用,并分析了胶体贵金属纳米结构组成及成分对SERS传感、可穿戴应力传感灵敏度、可重复性及稳定性的影响,最后展望了贵金属胶体纳米结构在SERS传感和柔性可穿戴应用中的发展趋势。  相似文献   

4.
We report here plasma-induced formation of Ag nanostructures for surface-enhanced Raman scattering (SERS) applications. An array of uniform Ag patterned structures of 150 nm diameter was first fabricated on a silicon substrate with imprint lithography; then the substrate was further treated with an oxygen plasma to fracture the patterned structures into clusters of smaller, interconnected, closely packed Ag nanoparticles (20-60 nm) and redeposited Ag nanodots ( approximately 10 nm) between the clusters. The substrate thus formed had a uniform ultrahigh SERS enhancement factor (1010) over the entire substrate for 4-mercaptophenol molecules. By comparison, Au patterned structures fabricated with the same method did not undergo such a morphological change after the plasma treatment and showed no enhancement of Raman scattering.  相似文献   

5.
Nanosized surface-enhanced Raman scattering (SERS) substrates fabricated by the controlled growth of metal nanostructures on water-dispersed two-dimensional nanomaterials can open a new avenue for SERS analysis of liquid samples in biological fields. In this work, regular and uniform Ag nanostructures were grown on the surface of graphene oxide (GO) through a microwave-assisted hydrothermal method. Polyamidoamine (PAMAM) dendrimers were assembled on the surface of GO to form GO/PAMAM templates for growing Ag nanostructures, which are primarily comprised of Ag dimers and trimers. The prepared Ag/GO nanocomposites are highly dispersed and stable in aqueous solution and may be used as substrates for enhanced Raman detection of rhodamine 6?G (R6G) in aqueous solution. This special substrate provides high-performance SERS and suppresses R6G fluorescence in aqueous solution and is promising as a nanosized material for the enhanced Raman detection of liquid samples in biological diagnostics.  相似文献   

6.
Chemical analyses in the field using surface-enhanced Raman scattering (SERS) protocols are expected to be part of several analytical procedures applied to water quality monitoring. To date, these endeavors have been supported by developments in SERS substrate nanofabrication, instrumentation portability, and the internet of things. Here, we report distinct chemical strategies for preparing magneto-plasmonic (Fe3O4 : Au) colloids, which are relevant in the context of trace-level detection of water contaminants due to their inherent multifunctionality. The main objective of this research is to investigate the role of poly(amidoamine) dendrimers (PAMAMs) in the preparation of SERS substrates integrating both functionalities into single nanostructures. Three chemical routes were investigated to design magneto-plasmonic nanostructures that translate into different ways for assessing SERS detection by using distinct interfaces. Hence, a series of magneto-plasmonic colloids have been characterized and then assessed for their SERS activity by using a model pesticide (thiram) dissolved in aqueous samples.  相似文献   

7.
Surface‐enhanced Raman spectroscopy (SERS) is an attractive tool for the sensing of molecules in the fields of chemical and biochemical analysis as it enables the sensitive detection of molecular fingerprint information even at the single‐molecule level. In addition to traditional coinage metals in SERS analysis, recent research on noble‐metal‐free materials has also yielded highly sensitive SERS activity. This Minireview presents the recent development of noble‐metal‐free materials as SERS substrates and their potential applications, especially semiconductors and emerging graphene‐based nanostructures. Rather than providing an exhaustive review of this field, possible contributions from semiconductor substrates, characteristics of graphene enhanced Raman scattering, as well as effect factors such as surface plasmon resonance, structure and defects of the nanostructures that are considered essential for SERS activity are emphasized. The intention is to illustrate, through these examples, that the promise of noble‐metal‐free materials for enhancing detection sensitivity can further fuel the development of SERS‐related applications.  相似文献   

8.
Surface‐enhanced Raman spectroscopy (SERS) is an emerging technology in the field of analytics. Due to the high sensitivity in connection with specific Raman molecular fingerprint information SERS can be used in a variety of analytical, bioanalytical, and biosensing applications. However, for the SERS effect substrates with metal nanostructures are needed. The broad application of this technology is greatly hampered by the lack of reliable and reproducible substrates. Usually the activity of a given substrate has to be determined by time‐consuming experiments such as calibration or ultramicroscopic studies. To use SERS as a standard analytical tool, cheap and reproducible substrates are required, preferably with a characterization technique that does not interfere with the subsequent measurements. Herein we introduce an innovative approach to produce low‐cost and large‐scale reproducible substrates for SERS applications, which allows easy and economical production of micropatterned SERS active surfaces on a large scale. This approach is based on an enzyme‐induced growth of silver nanostructures. The special structural feature of the enzymatically deposited silver nanoparticles prevents the breakdown of SERS activity even at high particle densities (particle density >60 %) that lead to a conductive layer. In contrast to other approaches, this substrate exhibits a relationship between electrical conductivity and the resulting SERS activity of a given spot. This enables the prediction of the SERS activity of the nanostructure ensemble and therewith the controllable and reproducible production of SERS substrates of enzymatic silver nanoparticles on a large scale, utilizing a simple measurement of the electrical conductivity. Furthermore, through a correlation between the conductivity and the SERS activity of the substrates it is possible to quantify SERS measurements with these substrates.  相似文献   

9.
何欣  蒋彩云  丁涛  王玉萍 《应用化学》2022,39(8):1167-1176
表面增强拉曼散射(Surface Enhanced Raman Scattering,SERS)是一种振动光谱技术,可直接识别目标分析物。在分析应用中,SERS信号的重现性极其重要,而这在很大程度上取决于SERS基底结构的均匀性。目前,SERS基底的重现性一直是制约该技术在分析测试中广泛应用的瓶颈,规则排列的纳米结构构成的有序化SERS基底的可控制备是该领域发展的前沿和趋势。本文就SERS基底的有序化制备方法及其应用进行了总结,分析了自组装法、光刻技术和模板辅助法所制备的有序SERS基底的特征、有序性形成原理和在分析测试中应用的可行性,为拓展SERS的实际应用提供一定的参考。  相似文献   

10.
Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy)   总被引:3,自引:1,他引:2  
Surface-enhanced Raman scattering (SERS) is a powerful technique for analyzing biological samples as it can rapidly and nondestructively provide chemical and, in some cases, structural information about molecules in aqueous environments. In the Raman scattering process, both visible and near-infrared (NIR) wavelengths of light can be used to induce polarization of Raman-active molecules, leading to inelastic light scattering that yields specific molecular vibrational information. The development of surface enhancement has enabled Raman scattering to be an effective tool for qualitative as well as quantitative measurements with high sensitivity and specificity. Recent advances have led to many novel applications of SERS for biological analyses, resulting in new insights for biochemistry and molecular biology, the detection of biological warfare agents, and medical diagnostics for cancer, diabetes, and other diseases. This trend article highlights many of these recent investigations and provides a brief outlook in order to assess possible future directions of SERS as a bioanalytical tool.  相似文献   

11.
The unique ability to obtain molecular recognition of an analyte at very low concentrations in situ in aqueous environments using surface enhanced Raman scattering (SERS) and surface enhanced resonance Raman scattering (SERRS) detection makes these spectroscopies of considerable interest. Improved understanding of the effect coupled to improvements in practical techniques make the use of SERS/SERRS much simpler than has been the case in the past. This article is designed as a tutorial review targeted at aiding in the development of practical applications.  相似文献   

12.
Surface‐enhanced Raman scattering (SERS) has become a mature vibrational spectroscopic technique during the last decades and the number of applications in the chemical, material, and in particular life sciences is rapidly increasing. This Review explains the basic theory of SERS in a brief tutorial and—based on original results from recent research—summarizes fundamental aspects necessary for understanding SERS and provides examples for the preparation of plasmonic nanostructures for SERS. Chemical applications of SERS are the centerpiece of this Review. They cover a broad range of topics such as catalysis and spectroelectrochemistry, single‐molecule detection, and (bio)analytical chemistry.  相似文献   

13.
Surface‐enhanced Raman scattering (SERS) is one of the most straightforward applications of the so‐called nanoplasmonics. This powerful molecular spectroscopy technique is based on the enhancement of the inelastic scattering from molecules located near nanostructured metallic surfaces when these are illuminated and surface plasmons are excited. The analytical applications of SERS are hindered when the Raman cross‐section of the analyte is too low, which is often the case in inorganic molecular species. This problem is even more serious when atomic species are to be identified, since these cannot display a vibrational signal. Herein we discuss the recent advancements toward the SERS detection of small inorganic compounds, including both molecular and atomic species.  相似文献   

14.
The fouling and stability are two most critical limiting factors for practical applications of surface‐enhanced Raman scattering (SERS)‐based microfluidic electrophoresis device. Herein, we present a novel biomimetic nanoengineering strategy to achieve a SERS substrate featuring antifouling ability, good stability, and reliable quantitative capability. Typically, by employing tea polyphenol as the reducing agent, the substrate made of silver core‐gold shell nanostructures in situ grown on silicon wafer surface is fabricated. The core‐shell nanostructures are further embedded with internal standard molecules. Remarkably, the fabricated substrate preserves distinct SERS effects, adaptable reproducibility, and reliable quantitative ability even if the substrate is incubated with 15% H2O2, 13% HNO3, or 108 CFU/mL bacteria, or suffered from 12‐day continuous vibration at 250 rpm/min in PBS buffer. As a proof‐of‐concept application, the DNA‐functionalized substrate is capable of precise quantification of Hg2+ with a limit of detection down to ca. 1 pM even in sewage water.  相似文献   

15.
Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS) are powerful optical scattering techniques used in such frontier areas of research as ultrasensitive chemical analysis, the characterization of nanostructures, and the detection of single molecules. However, measuring and, most importantly, interpreting SERS/SERRS spectra can be incredibly challenging. This is the result of modifications to the measured spectra that are due to of a variety of instabilities and contributions. These interferences and modifications arise from the nature of the enhancement itself, as well as the conditions used to attain SERS spectra. The present report is an attempt to collect in one place the analytical interferences that are most commonly found during the collection of SERS/SERRS spectra.  相似文献   

16.
Saxitoxin is one of the most harmful paralytic shellfish toxins due to its high toxicity and adverse effects on the environment and human health. Aptasensors provide simple detection procedures because they have the advantages of chemical stability, easy synthesis and modification, and high convenience in signal transformation. Surface-enhanced Raman scattering (SERS) is an analytical technique that amplifies the analytical signals of molecules at extremely low concentrations, or even at the single molecule level, when the analyte is very close to rough metal surfaces or nanostructures. In this study, an SERS aptasensor is reported for the determination of saxitoxin for the first time. The optimized saxitoxin aptamer (M-30f) was modified on gold nanoparticles and served as the recognition element. Crystal violet was used as the Raman reporter without chemical bounding. The analytical principles of the aptasensor are that saxitoxin destabilized the conformations of the aptamer at high temperature conditions and altered the binding of crystal violet on the gold nanoparticles. In the presence of saxitoxin, the conformation of aptamer containing the G-quadruplex that selectively bound crystal violet unfolded to a large extent and hence the crystal violet molecules were released from gold nanoparticles with a reduced SERS signal. The effects of the gold nanoparticle size, the amount of DNA, aptamer density, sodium chloride concentration, and operation temperature upon the SERS determination were optimized. The resulting simple SERS aptasensor was developed with a satisfactory limit of detection (11.7?nM) and selectivity. The application for the analysis of real shellfish samples with simple procedures demonstrates that this SERS aptasensor is promising for on-site applications.  相似文献   

17.
Surface-enhanced Raman spectrometry (SERS) of the diuretic drug amiloride is discussed. The SERS-active substrate used is colloidal silver, which is prepared at room temperature by simple tetrahydroborate reduction of an aqueous solution of silver nitrate. SERS detection of amiloride in human urine is illustrated. The reproducibility of quantitative SERS data is supported by the simultaneous measurement of the scattering signal and transmitted light. Relative standard deviations at the 5% level are compatible with many practical analytical situations.  相似文献   

18.
Core-shell nanostructures of silicon oxide@noble metal have drawn a lot of interest due to their distinctive characteristics and minimal toxicity with remarkable biocompatibility. Due to the unique property of localized surface plasmon resonance (LSPR), plasmonic nanoparticles are being used as surface-enhanced Raman scattering (SERS) based detection of pollutants and photothermal (PT) agents in cancer therapy. Herein, we demonstrate the synthesis of multifunctional silica core – Au nanostars shell (SiO2@Au NSs) nanostructures using surfactant free aqueous phase method. The SERS performance of the as-synthesized anisotropic core-shell NSs was examined using Rhodamine B (RhB) dye as a Raman probe and resulted in strong enhancement factor of 1.37×106. Furthermore, SiO2@Au NSs were also employed for PT killing of breast cancer cells and they exhibited a concentration-dependent increase in the photothermal effect. The SiO2@Au NSs show remarkable photothermal conversion efficiency of up to 72 % which is unprecedented. As an outcome, our synthesized NIR active SiO2@Au NSs are of pivotal importance to have their dual applications in SERS enhancement and PT effect.  相似文献   

19.
Certain colloidal metals such as.silver (Ag), gold (Au) and copper, (Cu), when properly or assembled, display remarkable enhancement effect to the Raman scattering cross section of adsorbed molecules. This surface-enhanced Raman scattering (SERS) phenomenon has found wide applications in the study of interfacial chemical processes and is a potentially non-invasive technique in molecule-specific analysis. However, the SERS activity of metal colloids depends sensitively on both the synthetic method and the aggregation and assembly procedure, making it difficult to develop SERS into a reliable and quantitative analytical technique. To solve this problem, one needs to develop a substrate with a well-defined adsorption area and SERS activity. One approach to achieve this goal is to assemble a monolayer of uniform colloidal metals onto a well-defined secondary substrate. Here we report our effort in assembling monolayers of uniform Au nanoparticles on the well-defined optical-inactive microparticles in a layer-by-layer (LbL) manner and the use of such assembly as SERS-active substrate.  相似文献   

20.
Electrochemical surface-enhanced hyper-Raman scattering (SEHRS) and surface-enhanced Raman scattering (SERS) of centrosymmetric molecules on Ag film over nanosphere (AgFON) electrodes are presented. The SEHR spectra of trans-1,2-bis(4-pyridyl)ethylene (BPE) at different potentials (vs Ag/AgCl) are presented for the first time, and a reversible potential tuning of the SEHR spectra of BPE is demonstrated. The SEHRS and SERS techniques were used to determine to what extent either site symmetry reduction or field gradient effects dictate the origin of the observed vibrational spectra. It is found that the SEHR and SER spectra for the molecules studied were distinctly different at all frequency regions at a fixed voltage, suggesting that centrosymmetry is largely retained upon adsorption to the AgFON surface and that field gradient effects are negligible. This work also shows that the SEHR spectra clearly depend on potential, whereas the SER spectra are essentially independent of potenial. It is determined that the combination of changes in deltaGads and the presence of coadsorbed counterions are responsible for altering the local symmetry of the adsorbate and only SEHRS has the sensitivity to detect these changes in the surface environment. Thus, SEHRS is a uniquely useful spectroscopic tool that is much more sensitive to the local adsorption environment than is SERS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号