首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The anionic ring‐opening polymerization of oxetanes containing hydroxyl groups was carried out with potassium tert‐butoxide as an initiator in the presence of 18‐crown‐6‐ether in N‐methylpyrrolidinone at 180 °C; it yielded corresponding multifunctional hyperbranched polymers: poly(3‐ethyl‐3‐hydroxymethyloxetane)s, with number‐average molecular weights of 2200–4100 in 83–95% yields, and poly(3‐methyl‐3‐hydroxymethyloxetane)s, with number‐average molecular weights of 4600–5200 in 70–95% yields. The synthesized poly(3‐ethyl‐3‐hydroxymethyloxetane)s and poly(3‐methyl‐3‐hydroxymethyloxetane)s were hyperbranched polyethers containing an oxetane moiety and many hydroxy groups at the ends. The postpolymerization of poly(3‐ethyl‐3‐hydroxymethyloxetane)s was performed in the presence of potassium tert‐butoxide and 18‐crown‐6‐ether in N‐methylpyrrolidinone at 180 °C; it yielded corresponding polymers with higher molecular weights in good yields. The cationic polymerization of poly(3‐ethyl‐3‐hydroxymethyloxetane) derivatives was carried out with boron trifluoride etherate as an initiator and was followed by alkaline hydrolysis; this yielded a new branched polymer, a poly(hyperbranched polyether), with many pendant hydroxy groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3739–3750, 2004  相似文献   

2.
Polyethers with unsymmetrical structures in the main chains and pendant chloromethyl groups were synthesized by the polyaddition of 3‐ethyl‐3‐(glycidyloxymethyl)oxetane (EGMO) with certain diacyl chlorides with quaternary onium salts or pyridine as catalysts. The unsymmetrical polyaddition of EGMO containing two different cyclic ether moieties such as oxirane and oxetane groups with terephthaloyl chloride proceeded smoothly in toluene at 90 °C for 6 h to give polymer 1 with a number‐average molecular weight (Mn) of 51,700 in a 93% yield when tetrabutylammonium bromide (TBAB) was used as a catalyst. The polyaddition also proceeded smoothly under the same conditions when other quaternary onium salts, such as tetrabutylammonium chloride, tetrabutylammonium iodide, tetrabutylphosphonium chloride, and tetrabutylphosphonium bromide, and pyridine were used as catalysts. However, without a catalyst no reaction occurred under the same reaction conditions. Polyadditions of EGMO with isophthaloyl chloride and adipoyl chloride gave polymer 2 (Mn = 28,700) and polymer 3 (Mn = 25,400) in 99 and 65% yields, respectively, under the same conditions. The chemical modification of the resulting polymer, polymer 1 , which contained reactive pendant chloromethyl groups, was also attempted with potassium 3‐phenyl‐2,5‐norbornadiene‐2‐carboxylate with TBAB as a phase‐transfer catalyst, and a polymer with 65 mol % pendant norbornadiene moieties was obtained. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 368–375, 2001  相似文献   

3.
The polyaddition of 4,4′‐bis[(3‐ethyl‐3‐oxetanyl)methoxy]biphenyl (4,4′‐BEOBP) and phenylphosphonic dichloride (PPDC) with quaternary onium salts as catalysts proceeded under mild reaction conditions to afford a polymer containing phosphorous atoms in its main chain. A polyphosphonate with a high number‐average molecular weight (10,300) was obtained by the reaction of 4,4′‐BEOBP and PPDC in the presence of tetraphenylphosphonium chloride (TPPC) in o‐dichlorobenzene at 130 °C for 24 h. The structure of the resulting polymer was confirmed with IR, 1H NMR, and 31P NMR spectroscopy. Furthermore, it was proved that the polyaddition of certain bis(oxetane)s with phosphonic dichlorides proceeded smoothly to give corresponding polyphosphonates with TPPC as the catalyst. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3835–3846, 2002  相似文献   

4.
This work aimed at the development of bioactive polymeric materials to be used for targeted drug delivery and tissue engineering applications. The proposed strategy was based on the design of macromolecular systems whose functionality can be easily modified. Polyesters containing side‐chain end capped by primary hydroxyl groups were synthesized by polyaddition of oxetanes and carboxylic anhydrides catalyzed by quaternary onium salts. The polyaddition of bis(oxetane) with different dicarboxylic acids was also investigated. In all cases, oxetane monomers contained one hydroxyl group either free or protected by a benzyl group. The polymer yield and molecular weight were relatively high when aromatic anhydrides were used. In all other cases, low conversions or no polymerization at all were obtained. In a parallel research line, several alkanols were successfully employed to synthesize different α,β′,β‐trisubstituted‐β‐lactones. These monomers were prepared in five steps starting from diethyl oxalpropionate according to established synthetic routes. Final yields depended on both preparation method and side‐chain structure. By using quaternary ammonium salts as catalysts, the synthesized functional lactones underwent anionic ring opening polymerization leading to the corresponding homopolymers and copolymers in fairly good yields. The prepared polymeric materials were extensively characterized by spectroscopic techniques, size exclusion chromatography, and thermal analysis. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2459–2476, 2008  相似文献   

5.
The polyaddition of bis(oxetane)s 1,4‐bis[(3‐ethyl‐3‐oxetanylmethoxymethyl)]benzene (BEOB), 4,4′‐bis[(3‐ethyl‐3‐oxetanyl)methoxy]benzene (4,4′‐BEOBP), 1,4‐bis[(3‐ethy‐3‐oxetanyl)methoxy] ‐benzene (1,4‐BEOMB), 1,2‐bis[(3‐ethyl‐3‐oxetanyl)methoxy]benzene (1,2‐BEOMB), 4,4‐bis[(3‐ethyl‐3‐oxetanyl)methoxy]biphenyl (4,4′‐BEOMB), 3,3′,5,5′‐tetramethyl‐[4,4′‐bis(3‐ethyl‐3‐oxetanyl)methoxy]biphenyl (TM‐BEOBP) with active diesters di‐s‐phenylthioterephthalate (PTTP), di‐s‐phenylthioisoterephthalate (PTIP), 4,4′‐di(p‐nitrophenyl)terephthalate (NPTP), 4,4′‐di(p‐nitrophenyl)isoterephthalate (NPIP) were carried out in the presence of tetraphenylphosphonium chloride (TPPC) as a catalyst in NMP for 24 h, affording corresponding polyesters with Mn's in the range 2200–18,200 in 41–98% yields. The obtained polymers would soluble in common organic solvents and had high thermal stabilities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1528–1536, 2004  相似文献   

6.
Due to the longevity of the cationic active centers, cationic ring‐opening photopolymerization can continue after illumination ceases. In addition, substantial reactivity enhancement for epoxides is realized through copolymerization with oxetanes. Here, the separate reactions of epoxide and oxetane moieties were resolved during illumination and subsequent dark cure via real‐time Raman spectroscopy. Using oxetane additives, reactivity and conversion of 3,4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexane carboxylate (EEC) were improved during illumination and subsequent dark cure through modulation of the initial formulation viscosity and selection of the oxetane secondary functional groups. The largest enhancement in reactivity occurred with secondary groups comprising either aliphatic chains with their flexibility or hydroxyls with their chain‐transfer capacity. In contrast, oxetanes containing UV‐absorbing phenyl rings reduced the initiation efficiency, and difunctional oxetanes suppressed overall conversion through additional crosslinking. Although bulk conversion was directly related to initial formulation viscosity, the impact of the oxetane secondary functional groups was greater. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1436–1445  相似文献   

7.
The synthesis and self‐polyaddition of new monomers, o‐, m‐, and p‐[(3‐ethyloxetane‐3‐yl)methoxyethyl]benzoic acid (o‐EOMB, m‐EOMB, and p‐EOMB) containing both oxetanyl groups and carboxyl groups were examined. The reactions of o‐EOMB, m‐EOMB, and p‐EOMB in the presence of tetraphenylphosphonium bromide as a catalyst in o‐dichlorobenzene at 150–170 °C resulted in self‐polyaddition to give the corresponding hetero‐telechelic polymers poly(o‐EOMB), poly(m‐EOMB), and poly(p‐EOMB) with Mns = 14,500–33,400 in satisfactory yields. The Mn of poly(o‐EOMB) decreased at higher reaction temperatures than 150 °C, unlike those of poly(m‐EOMB) and poly(p‐EOMB), possibly due to inter‐ or intraester exchange side reactions. It was also found that the thermal properties and solubilities of these polymers were supposed with the proposed structures. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7835–7842, 2008  相似文献   

8.
The synthesis of polyesters with pendant oxetane groups by the chemoselective alternating copolymerization of 3‐ethyl‐3‐(glycidyloxymethyl)oxetane (EGMO) with carboxylic anhydride and the photochemical reaction of the resulting polymer was examined. The alternating copolymerization of EGMO with phthalic anhydride proceeded chemoselectively with quaternary onium salts under appropriate reaction conditions, and the corresponding soluble polymers with pendant oxetane groups with number‐average molecular weights of 4700–7200 were obtained in 72–87% yields. Furthermore, the photochemical reaction of the resulting polymers was examined with certain photoacid generators in the film state upon UV irradiation, and it was found that the photocrosslinking reaction of the pendant oxetane groups proceeded smoothly to give the insoluble polymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1952–1961, 2003  相似文献   

9.
Polymers containing intact lactone groups are a new class of macromolecules with reactive groups, which are relatively easy to obtain by polymerization, polycondensation and polyaddition, as well as by reactions on existing macromolecules. Polymers with β-lactone Groups in particular can enter into numerous addition reactions, which can be used, for example, to obtain macromolecules containing hydroxy acid or amino acid groupings. The reactions proceed under mild conditions, and can even be carried out in aqueous media, frequently giving water-soluble polymers. The polymers can be cross-linked at low temperatures, even from the aqueous phase, by the addition of bifunctional or oligofunctional reagents. Polymers containing β-lactone groups can also be used as a basis for graft co-polymers; polyester or polyether branches can be grafted on, depending on whether monomeric lactones or monomeric epoxides are used.  相似文献   

10.
A monomer of the AB‐type and a bifunctional comonomer of the AA‐type containing two 2‐oxazoline rings and a biphenyl structural unit were prepared from the corresponding carboxylic acids via their esterification and subsequent amidation with an aminoalcohol. The cyclization of an amide to 2‐oxazoline structure was achieved by treatment with thionyl chloride followed by liberation of the free base with sodium hydrocarbonate in an aqueous solution. The prepared monomers were used for the polyaddition polymerization of the AB‐type monomer having a 2‐oxazoline and phenol group bound on adjacent rings of the biphenyl structure in solution. The monomer of the AA‐type was used for AA+BB‐type polyaddition reactions with aliphatic dicarboxylic acids. Both types of polymerizations have been performed in melt and in solution. The structures of the polymers were determined, and the thermal properties of the polymers were evaluated. Liquid‐crystalline (LC) structures of the prepared polymers were observed by DSC measurements and optical microscopy. The polyaddition reactions of the monomers containing a 2‐oxazoline ring and a biphenyl unit represent a new efficient way for the preparation of a biphenyl unit containing poly(ether amide)s and poly(ester amide)s. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
Hyperbranched polymers, dendritic macromolecules with branch‐on‐branch structures, have become an important polymer class since the early 1990s. They combine several advantages of the perfectly branched dendrimers with easy accessibility, typically in a one‐step synthesis. Hyperbranched polyethers are a particularly interesting class of chemically stable and often biocompatible materials. Multifunctional hyperbranched polyethers with controllable molar mass and comparably low polydispersities can been prepared using hydroxyl‐functional epoxides or oxetanes for polymerization via anionic and cationic polymerization mechanisms. Here, we review the progress in the preparation, characterization, and application of these uniquely versatile aliphatic polyether polyols. Their unusual mechanical, thermal, and solution properties render them useful for a variety of applications, for example, as building blocks for various complex macromolecular architectures or in biomedical applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
A new oxetane-containing polyether was synthesized by polycondensation of bisphenol-AF (BPAF) with 3,3-bis(chloromethyl)oxetane (BCMO) using the phase-transfer catalyzed method. The polycondensation proceeded very smoothly in aromatic solvents, catalyzed by quaternary ammonium or phosphonium salts, such as tetrabutylammonium bromide (TBAB) and tetrabutylphosphonium bromide (TBPB), to afford the polymer with high yield and molecular weight. Further, a polymer with relatively high molecular weight was obtained when the reactions were carried out in aromatic and lipophilic solvents such as benzene and nitrobenzene. The modification of this oxetane-containing polyether was easily achieved by carrying out ring-opening of the oxetane ring by using hydrogen chloride in methylene chloride, which produced a functional polymer containing hydroxyl and chloro groups. The oxetane-containing polyether was observed to be soluble in chlorinated aliphatic hydrocarbons such as methylene chloride and chloroform, as well as polar solvents such as DMSO, DMF, and DMAc, and also some common organic solvents such as benzene and toluene. However, it was insoluble in both aliphatic hydrocarbons as well as alcoholic solvents. The oxetane-containing polyether was observed to start losing weight at around 300°C under nitrogen atmosphere, and 10% weight loss was measured to be 411°C. The glass transition temperature of the oxetane-containing polyether was measured to be 134°C and the wide-angle X-ray diffraction pattern revealed this polymer to be semicrystalline. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 103–107, 1998  相似文献   

13.
The thermal curing reaction of polyfunctional oxetanes (oxetane resins) such as tris[4‐(3‐ethyloxetane‐3‐yl)methoxyphenyl]methane (TEOMP) and 1,3,5‐tris(3‐ethyl‐3‐oxetanylmethoxy)benzene with certain polyfunctional phenols was performed in bulk with quaternary onium salts as catalysts. The reaction proceeded smoothly at 180–220 °C and produced insoluble gel products, and the rate of gel production increased with the reaction temperature. The rate of the addition reaction of TEOMP with 3,3′,5,5′‐tetrachlorobisphenol A was also measured by IR spectroscopy, and the rate of reaction was proportional to the product of the oxetane concentration and the catalyst concentration in the film state. Furthermore, the glass‐transition temperatures and 5 and 10 wt % weight‐loss temperatures of the resulting gel products were confirmed with differential scanning calorimetry and thermogravimetric analysis, and the glass‐transition temperatures and 5 wt % weight‐loss temperatures were 127–162 °C and 323–351 °C, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2028–2037, 2005  相似文献   

14.
Natural human hair was successfully modified by the graft polymerization of trimethylene carbonate, β‐propiolactone, ε‐caprolactone, glycidol, ε‐caprolactam, and 5,5‐dimethyl‐1,3‐dioxane‐2‐thione. In contrast, we could not modify natural human hair by the graft polymerization of oxetane under similar conditions. The model reaction suggested that the main initiating species in these polymerizations were the amino, thiol, and hydroxyl groups in hair, which could induce ring‐opening polymerization. Among the tested monomers, β‐propiolactone was most effective for hair modification with its graft polymer, whose concentration was as high as 0.5 g/g of hair though polymerization under mild conditions. The effects of the hair pretreatment and polymerization temperature on the weight ratio of the grafted polymers were also investigated. Hair modified by grafted polymers was characterized with scanning electron microscopy and Fourier transform infrared measurements. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 736–744, 2007  相似文献   

15.
The photoinitiated cationic ring‐opening polymerizations of certain epoxides and 3,3‐disubstituted oxetanes display the characteristics of frontal polymerizations. When irradiated with UV light, these monomers display a marked induction period, during which little conversion of the monomer to the polymer takes place. The local application of heat to an irradiated monomer sample results in polymerization that occurs as a front propagating rapidly throughout the entire reaction mass. For the characterization of these frontal polymerizations, the use of a new monitoring technique, employing optical pyrometry, has been instituted. This method provides a simple, rapid means of following these fast polymerizations and quantitatively determining their frontal velocities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1630–1646, 2004  相似文献   

16.
王君  黄继庆  黄焰根  卿凤翎 《有机化学》2009,29(12):1969-1974
应用含短氟碳链的功能性聚合物可以避免因使用含长氟碳链化合物给环境带来的潜在危害. 以全氟丁基磺酰氟为原料, 通过磺酰化和N-烷基化合成带有端羟基的中间体4, 再通过2,2-二溴甲基氧杂环丁烷(2)与4的Williamson醚化反应合成了含全氟丁基磺酰胺侧基的新型氧杂环丁烷衍生物1a和1b. 以5,5-二甲基海因为原料, 采用类似的合成路线, 合成了带海因侧基的新型氧杂环丁烷单体6.  相似文献   

17.
Nine polymers with kinked aromatic structures in the main chain and biphenylene‐type mesogenic groups in the side chain were synthesized by the polyaddition of bis(epoxide)s and thio‐ and O‐esters. Tetrabutylphosphonium chloride and tetraphenylphosphonium chloride effectively catalyzed the polymerization. The thermal behavior of the polymers was measured by DSC and polarizing optical microscopy. The effect of annealing time on the degree of crystallization was investigated by DSC analysis. Polymers containing 100% of the kinked aromatic groups and 1,3‐propylene glycol in the main chain were amorphous. However, when half of the main‐chain aromatic moieties were composed of kinked groups and the other half of the aromatics were linear rodlike groups, the polymers were crystalline. The incorporation of kinked groups into the main chain of side‐chain liquid‐crystalline polymers suppressed the formation of liquid crystallinity. The polymer with mesogenic aromatic structures in both the main chain and the side chain was capable of forming a liquid‐crystalline phase. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 988–998, 2000  相似文献   

18.
New triazine-type dehydrocondensing reagents, such as ROMP-Trz-Cl and ROMP(OH)-Trz-Cl, were synthesized by a ring opening metathesis polymerization (ROMP) method, and these showed higher loading than conventional polymer-supported condensing reagents. These polymers effect the formation of amides in good yields by addition of a mixture of carboxylic acid, amine and NMM. ROMP(OH)-Trz-Cl, which contains hydroxyl groups in the polymer chain, gave amides in good yields even in MeOH.  相似文献   

19.
The polyaddition of 1,4‐bis[(3‐ethyl‐3‐oxetanyl)methoxymethyl]benzene with 2,2′‐bis[(4‐chloroformyl)oxyphenyl]propane was examined with quaternary onium salts as catalysts. When the polyaddition was carried out with tetrabutylphosphonium bromide in chlorobenzene at 120 °C for 24 h, the corresponding poly(alkyl aryl carbonate) with a high molecular weight (number‐average molecular weight = 16,700) was obtained in an almost quantitative yield. It was found from the 1H NMR and 13C NMR spectra of the obtained polymer that the addition reaction proceeded without any side reactions, providing the polycarbonate with pendant chloromethyl groups in the side chain. The polyaddition of bis{[3‐(3‐ethyloxetanyl)]methyl}terephthalate also proceeded smoothly and gave the corresponding polycarbonate with high molecular weight in a good yield. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2304–2311, 2003  相似文献   

20.
The polyaddition of bis(3‐ethyl‐3‐oxetanylmethyl) terephthalate (BEOT) with dichlorodiphenylsilane (CPS) using tetrabutylammonium bromide (TBAB) as a catalyst proceeded under mild reaction conditions to afford a polymer containing silicon atoms in the polymer main chain. A poly(silyl ether) (P‐1) with a high molecular weight (Mn = 53,200) was obtained by the reaction of BEOT with CPS in the presence of 5 mol % of TBAB in toluene at 0 °C for 1 h and then at 50 °C for 24 h. The structure of the resulting polymer was confirmed by IR and 1H NMR spectra. Furthermore, it was proved that the polyaddition of certain bis(oxetane)s with dichlorosilanes proceeds smoothly to give corresponding poly(silyl ether)s with TBAB as the catalyst. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2254–2259, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号