首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(ether amide)s containing naphthalene unit were prepared either by the polyaddition reaction of aromatic bis(2‐oxazoline)s with the different dihydroxynaphthalenes or by the homopolyaddition of a monomer containing an oxazoline, a hydroxy, and naphthalene moieties. First, polymerization method represents AA + BB mode where 1,4‐phenylene‐2,2′‐bis(2‐oxazoline) (A) and 1,3‐phenylene‐2,2′‐bis(2‐oxazoline) (B) were used as AA monomers and four different dihydroxynaphthalenes 1–4 were used as BB monomers. In the second case, 2‐(6‐hydroxynaphthalene‐2‐yl)‐2‐oxazoline (5) was used as AB‐type monomer in thermally induced polymerizations. The time dependences of polyadditions in bulk as well as in the solution were examined. The reduction of molar mass was observed after the initial fast increase of molar mass. This can be explained by the presence of side and degradation reactions. In both cases, polyadditions resulted in the linear poly(ether amide)s, which were characterized by 1H and 13C NMR spectroscopy. Thermal properties of the prepared polymers were studied by differential scanning calorimetry (DSC) measurements. Comparison of the temperatures of glass transition for polymers prepared in AA + BB mode shows the strong dependence of thermal properties on the structure of the polymers. The values were in the range of 136–171°C. The glass‐transition temperature (Tg) of poly[2‐(6‐hydroxynaphthalene‐2‐yl)‐2‐oxazoline] prepared by AB‐type polyaddition is 183°C, which corresponds to the higher contents of hard aromatic segments in the latter type of polymers compared to the polymers prepared in the AA + BB‐type polyadditions. The described polymers represent novel naphthalene unit‐containing poly(ether amide)s for different applications in material science. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Homopolyaddition reactions of AB‐type monomers containing a 2‐oxazoline and a phenol group in different positions of the phenyl ring, namely, 2‐(4‐hydroxyphenyl)‐2‐oxazoline, 2‐(3‐hydroxyphenyl)‐2‐oxazoline, 2‐(2‐hydroxyphenyl)‐2‐oxazoline, and 2‐(4‐hydroxyphenyl)‐4,4‐dimethyl‐2‐oxazoline, were studied. Except for 2‐(4‐hydroxyphenyl)‐4,4‐dimethyl‐2‐oxazoline, the reaction carried out in bulk or a solution of highly boiling solvents resulted in the formation of poly(ether amide)s with molecular weights in the range of 103 to 104 as measured by vapor pressure osmometry and gel permeation chromatography. A mechanism of the growth reaction, including a nucleophilic attack of a phenol group to a 2‐oxazoline ring in the 5‐position, was suggested. The polymerization was accompanied by a side reaction of the amido groups formed by the primary reaction of the 2‐oxazoline ring. This led to branching of the main chain. The thermal properties of the prepared polymers were evaluated. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 343–355, 2006  相似文献   

3.
The synthesis of poly(2‐ethyl‐2‐oxazoline)‐b‐linear poly(ethylenimine) (PEtOx‐b‐LPEI) copolymers by selective basic hydrolysis of PEtOx‐b‐poly(2‐H‐2‐oxazoline) (PEtOx‐b‐PHOx) is described. For this purpose, an easy method for the preparation of the 2‐H‐2‐oxazoline (HOx) monomer was developed. Based on the microwave‐assisted polymerization kinetics for this monomer, PEtOx‐b‐PHOx copolymers were prepared. Subsequently, the block copolymers were selectively hydrolyzed to PEtOx‐b‐LPEI under basic conditions. The success of the polymerizations and subsequent post‐polymerization reactions was demonstrated by 1H NMR spectroscopy and MALDI‐TOF‐MS investigations of the obtained polymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
The click reaction between azides and alkynes is been increasingly employed in the preparation of polymers. In this article, we describe the synthesis and click polyaddition reaction of a new A‐B‐type amide monomer—prepared from d ‐glucose as renewable resource—containing the alkyne and azide functions. Both Cu(I)‐catalyzed and metal‐free click polymerization methods were used to prepare glucose‐derived poly(amide triazole)s. The resulting polymers had weight‐average molecular weights in the 45,000–129,000 range and were characterized by GPC, IR, and NMR spectroscopies. Thermal and X‐ray diffraction studies revealed them to be amorphous. Their qualitative solubilities in various solvents and their water sorption have been studied. The poly(amide triazole)s having the alcohol functions protected as methyl ether were water‐soluble. The presence of the amide functions along the polymer chain made these polytriazoles degradable in the presence of sodium deuteroxide. The degradation was monitored by NMR analysis, and the degradation product was characterized by HRMS. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 629–638  相似文献   

5.
New amphiphilic triblock copoly(2‐oxazoline)s, containing hydrophobic domains with fluorine‐containing blocks, were synthesized. Using microwave radiation as heating source, triblock copolymers with narrow molar mass distributions were obtained by the sequential addition of 2‐ethyl‐2‐oxazoline, 2‐(1‐ethylheptyl)‐2‐oxazoline, and 2‐(2,6‐difluorophenyl)‐2‐oxazoline. The polymers obtained were characterized by size exclusion chromatography, 1H NMR spectroscopy and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). To investigate the incorporation of all three monomers into the triblock copolymers, a model polymer was prepared with shorter blocks exhibiting a suitable length to be measured in the reflector mode of a MALDI‐TOF MS. In addition, kinetic investigations on the homopolymerizations of all monomers were performed in nitromethane at 140 °C, yielding the polymerization rates under these conditions. DSC measurements of poly(2‐(1‐ethylheptyl)‐2‐oxazoline) and poly(2‐(2,6‐difluorophenyl)‐2‐oxazoline)) revealing glass transitions at about 33 and 120 °C, respectively. The thermal analysis of a blend of the two polymers showed two glass transitions revealing demixing, which could be an indicating for the immiscibility of the two components in the block copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

6.
A two‐step synthetic route to novel copolymer networks, consisting of polymethacrylate and polyacetal components, was developed by combining the polyaddition and anionic polymerization techniques. The functional polymethacrylates containing hydroxyl or vinyloxyl side groups were used as crosslinkers. They were anionically synthesized as follows: the copolymer of 2‐hydroxyethyl methacrylate (HEMA) and methyl methacrylate (MMA) was prepared by the anionic copolymerization of 2‐(trimethylsiloxy)ethyl methacrylate and MMA, followed by hydrolysis. The copolymer poly(HEMA‐co‐MMA) thus obtained possessed a hydroxyl group in each of its HEMA units. Another kind of vinyloxyl‐containing (co)polymer was prepared by the anionic homopolymerization of 2‐(vinyloxy)ethyl methacrylate (VEMA) or its copolymerization with MMA. The resulting (co)polymer possessed reactive vinyloxyl side groups. The copolymer networks were obtained by reacting each of the above‐mentioned (co)polymers with a polyacetal prepared via the polyaddition between a divinyl ether and a diol. Three divinyl ethers (ethylene glycol divinyl ether, 1,4‐butanediol divinyl ether, and 1,6‐hexanediol divinyl ether) and three diols (ethylene glycol, 1,4‐butanediol, and 1,6‐hexanediol) were employed as monomers in the polyaddition step, and their combinations generated nine kinds of polyacetals. When a polyaddition reaction was terminated with a divinyl ether monomer, a polyacetal with two vinyloxyl end groups was obtained, which could further react with the hydroxyl groups of poly(HEMA‐co‐MMA) to generate a copolymer network. On the other hand, when a diol was used as terminator in the polyaddition, the resulting polyacetal possessed two hydroxyl end groups, which could react with the vinyloxyl groups of poly(VEMA) or poly(VEMA‐co‐MMA), to generate a copolymer network. All the copolymer networks exhibited degradation in the presence of acids. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 117–126, 2001  相似文献   

7.
Chemistry of 2‐oxazolines is involved in the polymer synthesis fields of cationic ring‐opening polymerization (CROP) and enzymatic ring‐opening polyaddition (EROPA), although both polymerizations look like a quite different class of reaction. The key for the polymerization to proceed is combination of the catalyst (initiator) and the design of monomers. This article describes recent developments in polymer synthesis via these two kinds of polymerizations to afford various functional polymers having completely different structures, poly(N‐acylethylenimine)s via CROP and 2‐amino‐2‐deoxy sugar unit‐containing oligo and polysaccharides via EROPA, respectively. From the viewpoint of reaction mode, an acid‐catalyzed ring‐opening polyaddition (ROPA) is considered to be a crossing where CROP and EROPA meet. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1251–1270, 2010  相似文献   

8.
A synthetic route is developed for the preparation of an AB‐type of monomer carrying an epoxy and a thiol group. Base‐catalyzed thiol‐epoxy polymerization of this monomer gave rise to poly(β‐hydroxythio‐ether)s. A systematic variation in the reaction conditions suggested that tetrabutyl ammonium fluoride, lithium hydroxide, and 1,8‐diazabicycloundecene (DBU) were good polymerization catalysts. Triethylamine, in contrast, required higher temperatures and excess amounts to yield polymers. THF and water could be used as polymerization mediums. However, the best results were obtained in bulk conditions. This required the use of a mechanical stirrer due to the high viscosity of the polymerization mixture. The polymers obtained from the AB monomer route exhibited significantly higher molecular weights (Mw = 47,700, Mn = 23,200 g/mol) than the materials prepared from an AA/BB type of the monomer system (Mw = 10,000, Mn = 5400 g/mol). The prepared reactive polymers could be transformed into a fluorescent or a cationic structure through postpolymerization modification of the reactive hydroxyl sites present along the polymer backbone. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2040–2046  相似文献   

9.
Several novel mesogenic spiro-orthoester monomers such as 1,6,10-trioxaspiro[4,5]decanes 4 , containing biphenyl mesogens at the C-8 positions of the five- and six-membered spirocyclic ring, through the alkylene spacers of different lengths were prepared by condensation reaction of the corresponding biphenyl mesogenic 1,3-propanediol 3 with 2,2-diethoxytetrahydrofuran, with 50–75% yields. Through cationic double ring-opening polymerization, carried out with boron trifluoride etherate as an initiator (5 mol % vs. monomer) in bulk at 150°C, spiro-orthoester monomers 4 afforded a novel class of side-chain thermotropic LC polymers with a poly(ether ester) as the main chain 8 . The liquid-crystalline properties of the spiro-orthoester monomers and the resulting polymers were examined by differential scanning calorimetry and optical polarized microscopy. Biphase separation was observed in the side-chain liquid-crystalline poly(ether ester)s upon annealing in the broad isotropic region. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2439–2455, 1998  相似文献   

10.
Poly(2‐oxazoline)s with methyl ester functionalized side chains are interesting as they can undergo a direct amidation reaction or can be hydrolyzed to the carboxylic acid, making them versatile functional polymers for conjugation. In this work, detailed studies on the homo‐ and copolymerization kinetics of two methyl ester functionalized 2‐oxazoline monomers with 2‐methyl‐2‐oxazoline, 2‐ethyl‐2‐oxazoline, and 2‐n‐propyl‐2‐oxazoline are reported. The homopolymerization of the methyl ester functionalized monomers is found to be faster compared to the alkyl monomers, while copolymerization unexpectedly reveals that the methyl ester containing monomers significantly accelerate the polymerization. A computational study confirms that methyl ester groups increase the electrophilicity of the living chain end, even if they are not directly attached to the terminal residue. Moreover, the electrophilicity of the living chain end is found to be more important than the nucleophilicity of the monomer in determining the rate of propagation. However, the monomer nucleophilicity can be correlated with the different rates of incorporation when two monomers compete for the same chain end, that is, in copolymerizations. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2649–2661  相似文献   

11.
Two functional monomers, methacrylic acid 4‐(2‐benzoxazol)‐benzyl ester (MABE) containing the benzoxazole group and 4‐(2‐(9‐anthryl))‐vinyl‐styrene (AVS) containing the anthracene group were synthesized by rational design. The MABE was polymerized via atom transfer radical polymerization (ATRP) using ethyl 2‐bromoisobutyrate (EBIB) as initiator in CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) catalyst system; block copolymers poly(MABE‐b‐AVS) was obtained, which was conducted by using poly(MABE) as macro‐initiator, AVS as the second monomer, and CuBr/PMDETA as catalyst. The constitute of two monomers in block copolymers poly(MABE‐b‐AVS) by ATRP could be adjusted, that is the constitute of the benzoxazole group and the anthracene group could be controlled in AB‐type block copolymers. Moreover, the fluorescent properties of homopolymers poly(MABE) and block copolymers poly(MABE‐b‐AVS) were discussed herein. With the excitation at λex = 330 nm, the fluorescent emission spectrum of poly(MABE) solution showed emission at 375 nm corresponding to the benzoxazole‐based part; with the same excitation, the fluorescent emission spectrum of poly(MABE‐b‐AVS) solution showed a broad peek at 330–600 nm when the monomer AVS to the total monomers mole ratio was 0.31, and the fluorescent emission spectrum of poly(MABE‐b‐AVS) in film state only showed one peak at 525 nm corresponding to the anthracene‐based unit that indicated a complete energy transfer from the benzoxazole group to the anthracene group. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3894–3901, 2007  相似文献   

12.
Soluble hyperbranched glycopolymers were prepared by copolymerization of glycan monomers with reversible addition‐fragmentation chain transfer polymerization (RAFT) inimers in a simple one‐pot reaction. Two novel RAFT inimers, 2‐(methacryloyloxy)ethyl 4‐cyano‐4‐(phenylcarbonothioylthio)pentanoate (MAE‐CPP) and 2‐(3‐(benzylthiocarbonothioylthio)propanoyloxy)ethyl acrylate (BCP‐EA) were synthesized and used to prepare hyperbranched glycopolymers. Two types of galactose‐based saccharide monomers, 6‐O‐methacryloyl‐1,2:3,4‐di‐O‐isopropylidene‐D ‐galactopyranose (proGal‐M) and 6‐O‐(2′‐acrylamido‐2′‐methylpropanoate)‐1,2:3,4‐di‐O‐isopropylidene‐D ‐galactopyranose (proGal‐A), containing a methacrylate and an acrylamide group, respectively, were also synthesized and polymerized under the mediation of the MAE‐CPP and BCP‐EA inimers, respectively. In addition, hyperbranched poly(proGal‐M), linear poly(proGal‐A), and hyperbranched poly(proGal‐A) were generated and their polymerization kinetics were studied and compared. An unexpected difference was observed in the kinetics between the two monomers during polymerization: the relationship between polymerization rate and concentration of inimer was totally opposite in the two monomer–inimer systems. Branching analysis was conducted by using degree of branching (DB) as the measurement parameter. As expected, a higher DB occurred with increased inimer content. Furthermore, these polymers were readily deprotected by hydrolysis in trifluoroacetic acid solution resulting in water‐soluble polymers. The resulting branched glycopolymers have potential as biomimetics of polysaccharides. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
A comprehensive investigation on the synthesis and properties of a series of ferrocene‐containing (meth)acrylate monomers and their polymers that differ in the linkers between the ferrocene unit and the backbone was carried out. The side‐chain ferrocene‐containing polymers were prepared via atom transfer radical polymerization. The kinetic studies indicated that polymerization of most monomers followed a “controlled”/living manner. The polymerization rates were affected by the vinyl monomer structures and decreased with an increase of the linker length. Methacrylate polymerization was much faster than acrylate polymerization. The optical absorption of monomers and polymers was affected by the linkers. Thermal properties of these polymers can be tuned by controlling the length of the linker between the ferrocene unit and the backbone. By increasing the length of the linker, the glass transition temperature ranged from over 100 to ?20 °C. Electrochemical properties of both monomers and polymers were characterized. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
The microwave‐assisted statistical copolymerization of 2‐phenyl‐2‐oxazoline with 2‐methyl‐2‐oxazoline or 2‐ethyl‐2‐oxazoline is discussed in this contribution. Kinetic studies of these statistical copolymerizations as well as reactivity ratio determinations were performed to investigate the monomer distribution in these copoly(2‐oxazoline)s, demonstrating the formation of quasi‐diblock copolymers. In addition, the synthesis of copolymer series with monomer concentrations ranging from 0 to 100 mol % is described. These copolymer series were characterized with 1H NMR spectroscopy, gas chromatography, and gel permeation chromatography. Moreover, the glass‐transition temperatures and solubility of these copolymers were studied, and this revealing better mixing of poly(2‐methyl‐2‐oxazoline) (pMeOx) with poly(2‐phenyl‐2‐oxazoline) (pPhOx) than poly(2‐ethyl‐2‐oxazoline) (pEtOx) with poly(2‐phenyl‐2‐oxazoline) (pPhOx). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 416–422, 2007.  相似文献   

15.
New methacrylate monomers with carbazole moieties as pendant groups were synthesized by multistep syntheses starting from carbazoles with biphenyl substituents in the aromatic ring. The corresponding polymers were prepared using a free‐radical polymerization. The novel polymers contain N‐alkylated carbazoles mono‐ or bi‐substituted with biphenyl groups in the aromatic ring. N‐alkyl chains in polymers vary by length and structure. All new polymers were synthesized to evaluate the structural changes in terms of their effect on the energy profile, thermal, dielectric, and photophysical properties when compared to the parent polymer poly(2‐(9H‐carbazol‐9‐yl)ethyl methacrylate). According to the obtained results, these compounds may be well suited for memory resistor devices. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 70–76  相似文献   

16.
Poly(2‐propyl‐oxazoline)s can be prepared by living cationic ring‐opening polymerization of 2‐oxazolines and represent an emerging class of biocompatible polymers exhibiting a lower critical solution temperature in aqueous solution close to body temperature. However, their usability is limited by the irreversibility of the transition due to isothermal crystallization in case of poly(2‐isopropyl‐2‐oxazoline) and the rather low glass transition temperatures (Tg < 45 °C) of poly(2‐n‐propyl‐2‐oxazoline)‐based polymers. The copolymerization of 2‐cyclopropyl‐2‐oxazoline and 2‐ethyl‐2‐oxazoline presented herein yields gradient copolymers whose cloud point temperatures can be accurately tuned over a broad temperature range by simple variation of the composition. Surprisingly, all copolymers reveal lower Tgs than the corresponding homopolymers ascribed to suppression of interchain interactions. However, it is noteworthy that the copolymers still have Tgs > 45 °C, enabling convenient storage in the fridge for future biomedical formulations. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3118–3122  相似文献   

17.
A new trithiocarbonate 1 bearing two hydroxyl moieties was synthesized and employed as a RAFT agent for radical polymerization of vinyl monomers. 1 mediated RAFT polymerizations of styrene and ethyl acrylate to give the corresponding polymers with predictable molecular weights and narrow molecular weight distributions. Structural analyses of the polymers with NMR and MALDI‐TOF mass techniques revealed that they were telechelic ones, of which both chain ends were endowed with hydroxyl groups inherited from trithiocarbonate 1 . Usefulness of these telechelic polymers as polymeric diol‐type building blocks was demonstrated in their polyaddition with diisocyanates, which gave the corresponding polyurethanes. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

18.
AB′ type monomers containing a thiolactone unit and vinyl ether moiety have been prepared with high yields. Aminolysis of the thiolactone moiety generates the corresponding thiol in situ, and upon UV‐irradiation, radical polyaddition occurs in the same medium, yielding linear poly(amide‐urethane)s with different side chain residues and (Poly(Ethylene Oxide)) PEO‐like backbone. Moreover, these unique polymers feature lower critical solution temperature behavior in water. Systematic modification of the responsive polymers reveals the influence of the variation of the side chains and the backbone structure on the corresponding solubility properties. In selected cases, multiresponsive polymers have been developed, which also respond to pH and metal concentration.

  相似文献   


19.
This article describes the synthesis and characterization of a variety of new poly(2‐oxazoline)s. With regard to functional polymers, 2‐oxazolines represent an interesting class of monomers because of the easy variation of the substituent in 2‐position. Starting from the corresponding nitriles, different 2‐oxazolines were obtained containing a diverse set of 2‐substituents, including thioether bonds ( M11 ), trifluoromethyl groups ( M8 , M10 ), and alkyl‐ or aryl groups ( M1 – M7 ). The subsequent polymerization of the majority of these monomers proceeded in a living manner, which was demonstrated by linear first‐order kinetics, a linear increase of molar mass with conversion, and relatively narrow molar mass distributions. In addition, selected thermal and surface properties of the polymers were studied utilizing DSC and contact‐angle measurements to determine the effects of different 2‐substituents on the macroscopic properties. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3829–3838, 2009  相似文献   

20.
A new one‐pot procedure for imide–acid monomer synthesis and polymerization is reported for four new poly(amide–imide)s. Bisphenol A dianhydride (BPADA) was reacted with twice the molar amount of 3‐aminobenzoic acid (3ABA) or 3‐amino‐4‐methylbenzoic acid (3A4MBA) in 1‐methyl‐2‐pyrrolidinone (NMP) and toluene mixture, and the amic acid intermediates cyclized in solution to give two diimide‐containing dicarboxylic acid monomers. Without isolation, the diacid monomers were then polymerized with either 1,3‐diaminomesitylene (DAM) or 1,5‐diaminonaphthalene (1,5NAPda) using triphenyl phosphite‐activation to give a series of four soluble poly(amide–imide)s, PAI. Isolation and purification of the dicarboxylic acid monomers was not necessary for formation of high molecular weight polymers as indicated by intrinsic viscosities of 0.64–1.04 dL/g determined in N,N‐dimethylacetamide (DMAc). All of the PAI were soluble in polar aprotic solvents such as NMP, DMAc, and dimethyl sulfoxide (DMSO). Glass transition temperatures ranged from 243 to 279°C by DSC, and 5% weight loss temperatures were above 400°C in both air and nitrogen. Flexible films cast from DMAc were light yellow, transparent, and tough. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1183–1188, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号