首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An empirical plasticity constitutive form describing the flow stress as a function of strain, strain-rate, and temperature has been developed, fit to data for three dual-phase (DP) steels, and compared with independent experiments outside of the fit domain. Dubbed the “H/V model” (for “Hollomon/Voce”), the function consists of three multiplicative functions describing (a) strain hardening, (b) strain-rate sensitivity, and (c) temperature sensitivity. Neither the multiplicative structure nor the choice of functions (b) or (c) is novel. The strain hardening function, (a), has two novel features: (1) it incorporates a linear combination coefficient, α, that allows representation of Hollomon (power law) behavior (α = 1), Voce (saturation) behavior (α = 0) or any intermediate case (0 < α < 1, and (2) it allows incorporation of the temperature sensitivity of strain hardening rate in a natural way by allowing α to vary with temperature (in the simplest case, linearly). This form therefore allows a natural transition from unbounded strain hardening at low temperatures toward saturation behavior at higher temperatures, consistent with many observations. Hollomon, Voce, H/V models and others selected as representative from the literature were fit for DP590, DP780, and DP980 steels by least-squares using a series of tensile tests up to the uniform strain conducted over a range of temperatures. Jump-rate tests were used to probe strain rate sensitivity. The selected laws were then used with coupled thermo-mechanical finite element (FE) modeling to predict behavior for tests outside the fit range: non-isothermal tensile tests beyond the uniform strain at room temperatures, isothermal tensile tests beyond the uniform strain at several temperatures and hydraulic bulge tests at room temperature. The agreement was best for the H/V model, which captured strain hardening at high strain accurately as well as the variation of strain hardening with temperature. The agreement of FE predictions up to the tensile failure strain illustrates the critical role of deformation-induced heating in high-strength/high ductility alloys, the importance of having a constitutive model that is accurate at large strains, and the implication that damage and void growth are unlikely to be determinant factors in the tensile failure of these alloys. The new constitutive model may have application for a wide range of alloys beyond DP steels, and it may be extended to larger strain rate and temperature ranges using alternate forms of strain rate sensitivity and thermal softening appearing in the literature.  相似文献   

2.
IntroductionMuchworkhasbeencarriedouttoinvestigatetheinfluenceoforientationandstrainrateonthemechanicalpropertyofnickel_basesinglecrystalsuperalloys .Inparticular,theanomalousyieldingbehavior,tension/compressionasymmetryandorientationdependencehavebeen…  相似文献   

3.
In this work, a single crystal constitutive law for multiple slip and twinning modes in single phase hcp materials is developed. For each slip mode, a dislocation population is evolved explicitly as a function of temperature and strain rate through thermally-activated recovery and debris formation and the associated hardening includes stage IV. A stress-based hardening law for twin activation accounts for temperature effects through its interaction with slip dislocations. For model validation against macroscopic measurement, this single crystal law is implemented into a visco-plastic-self-consistent (VPSC) polycrystal model which accounts for texture evolution and contains a subgrain micromechanical model for twin reorientation and morphology. Slip and twinning dislocations interact with the twin boundaries through a directional Hall–Petch mechanism. The model is adjusted to predict the plastic anisotropy of clock-rolled pure Zr for three different deformation paths and at four temperatures ranging from 76 K to 450 K (at a quasi-static rate of 10−3 1/s). The model captures the transition from slip-dominated to twinning-dominated deformation as temperature decreases, and identifies microstructural mechanisms, such as twin nucleation and twin–slip interactions, where future characterization is needed.  相似文献   

4.
A viscoplastic crystal plasticity model is incorporated within the Marciniak–Kuczynski (M–K) approach for forming limit curve prediction. The approach allows for the incorporation of crystallographic texture-induced anisotropy and the evolution of the same. The effects of mechanical twinning on the plastic response and texture evolution are also incorporated. Grain-level constitutive parameters describing the temperature dependent behavior of hexagonal close packed Mg alloy, AZ31B, sheets at discrete temperatures are used as a first application of the model. A trade-off between significant strain hardening behavior at lower temperatures (∼150 °C), and significant strain rate hardening at higher temperatures (∼200 °C) lead to similarities in the predicted forming limits. The actual formability of this alloy depends strongly on temperature within this range, and this distinction with the current modeling is related to more localized instability-based failure mechanisms at the lower temperatures than is assumed in the M–K approach. It is shown that the strain path dependence in the strain hardening response is significant and that it influences the forming limits in a predictable way. For broader applicability, a means of incorporating dynamic recrystallization into the crystal plasticity model is required.  相似文献   

5.
A series of tensile tests of Sn–3Ag–0.5Cu and Sn–0.7Cu lead-free solders were investigated at various strain rates from 1 × 10−4 s−1 to 1 × 10−2 s−1 and over a wide temperature range from 25 oC to 150 oC. Two-step strain rate jump tests, three-step short term creep tests with stress jump, and uniaxial ratcheting tests were also conducted. Based on the test data, a new constitutive model was proposed with a simple formulation and only eight material constants which can be easily obtained. The model employs two carefully defined back stress components to simulate the loading/unloading asymmetry phenomenon in uniaxial ratcheting tests. Different evolution rules of short-range back stress were given for loading and unloading stage, which provides the model ability to simulate the asymmetry in hysteresis loops. The proposed model presents good simulation of uniaxial tensile tests, strain rate jump tests, short term creep tests with stress jump, and uniaxial ratcheting tests.  相似文献   

6.
The compressive stress-strain relationships of 6061Al alloy over wide temperatures and strain rates are investigated. The dynamic impact experiments are performed using an improved high temperature split Hopkinson pressure bar apparatus. The experimental results are compared with those obtained by the modified Johnson-Cook constitutive model. It is found that the dynamic mechanical behavior depends sensitively on temperature under relatively low strain rates or on strain rate at relatively high temperatures. The good agreement indicates that it is valid to adopt the parameter identification method and the constitutive model to describe and predict the mechanical response of materials.  相似文献   

7.
This paper presents a simple thermo-mechanical model to explain and quantify the observed strain-rate dependence of the stress hysteresis of shape memory alloys (SMAs) bars/strips during stress-induced forward/reverse phase transition with latent heat release/absorption. By solving the convective heat transfer equation and employing the temperature dependence of the SMA’s transformation stresses, we are able to prove that the stress hysteresis depends non-monotonically on the applied strain rate with a peak appearing at an intermediate strain rate. We further showed that such a non-monotonic rate dependence is governed by the competition of phase-transition time (or latent-heat release/absorption time) and the time of heat exchange with the environment, and that the hysteresis peak is achieved when the two time scales become comparable. A bell-shaped scaling law of the rate dependence is derived, agreeing quantitatively well with the results of experiments.  相似文献   

8.
The effects of strain rate and temperature on the tension stress–strain responses of polycarbonate are experimentally investigated over a wide range of strain rates (0.001–1700 s−1) and temperatures (0–120 °C). A modified split Hopkinson tension bar is used for high-rate uniaxial tension tests. Experimental results indicate that the stress–strain responses of polycarbonate at high strain rates exhibit the nonlinear characteristics including the obvious yielding and strain softening. The tension behavior is strongly dependent on the strain rate and temperature. The values of yield stress and strain at yield present a dramatic increase at higher strain rates and decrease with the increase in temperature. Moreover, there exists a significant rate-sensitivity transition in the polycarbonate tension yield behavior. Based on the experimental investigation, a physically based three-dimensional elastoplastic constitutive model for the finite deformation of glassy polymers is used to characterize the rate-temperature dependent yield and post-yield behavior of polycarbonate when subjected to tension loading. The model results are shown close to the experimental data within the investigated strain-rate and temperature ranges.  相似文献   

9.
In the study, a second law analysis for a steady-laminar flow of water in adiabatic microtubes has been conducted. Smooth microtubes with the diameters between 50 and 150 μm made of fused silica were used in the experiments. Considerable temperature rises due to viscous dissipation and relatively high pressure losses of flow were observed in experiments. To identify irreversibility of flow, rate of entropy generation from the experiments have been determined in the laminar flow range of Re = 20-2200. The second law of thermodynamics was applied to predict the entropy generation. The results of model taken from the literature, proposed to predict the temperature rise caused by viscous heating, correspond well with the experimental data. The second law analysis results showed that the flow characteristics in the smooth microtubes distinguish substantially from the conventional theory for flow in the larger tubes with respect to viscous heating/dissipation (temperature rise of flow) total entropy generation rate and lost work.  相似文献   

10.
We studied strain effects on the crystallization of a series of isotactic polypropylenes (iPP) of various molecular weights using rheology, rheo-optical measurements, differential scanning calorimetry (DSC), and wide-angle X-ray diffraction (WAXD). The samples were pre-sheared and then crystallized both at the same temperature. Transmitted light intensity measurements demonstrate that the effect of pre-shear on crystallization rate keeps increasing with strain up to surprisingly large strain levels, much beyond strains that are required to reach steady shear flow (at given We). Crystal orientation sets in at a total strain of about or higher. WAXD and DSC measurements corroborated the light transmission results. Total shear strains to 1000 were applied to the iPP samples at the beginning of a crystallization experiment, after the samples had reached the crystallization temperature of 145°C (under-cooled state). A constant Weissenberg number We=1 (We is defined as the product of shear rate and a relaxation time) was maintained for all pre-shearing of this study. We=1 corresponds to the onset of shear thinning in steady shear. Deborah number values were low, De<<1, indicating that steady shear flow had been reached in all pre-shearing runs (De is defined as the ratio of relaxation time to pre-shearing time). Further studies are needed at high We as there are indications that strain requirements are much reduced at high We. A fundamental understanding is still missing.  相似文献   

11.
Dependence of activation volume with flow stress is examined for metals with grain size lower than 0.3 μm and larger than few tens of nanometers, where plastic deformation is most likely to be governed by a combination of grain boundary sliding and dislocations activity. The experimentally observed deviation from the classic linear behavior given by Cottrell–Stokes law [Basinski, Z.S., 1974. Forest hardening in face centered cubic metals. Scripta Metallurgica 8, 1301–1308] is analyzed, thanks to a modified Orowan equation taking into account of the grain boundaries sliding coupled to dislocations activity. These results are compared to experimental measurements of the activation volume, between room temperature and 120 °C, for a copper nanostructure with a grain size of 100 nm. A constant activation volume is observed at low stress (or high temperature) followed by an increase of activation volume with stress (inverse Cottrell–Stokes behavior). This analysis follows our initial experiments on this fine grained metal prepared by powder metallurgy, which exhibits ductility at near constant stress and strain rate [Champion, Y., Langlois, C., Guérin-Mailly, S., Langlois, P., Bonnentien, J.-L., Hÿtch, M.J., 2003. Near-perfect elastoplasticity in pure nanocrystalline copper. Science 300, 310–311].  相似文献   

12.
The low-temperature (less than one-fourth of the melting temperature) creep deformation behavior of hexagonally close-packed (HCP) α-Ti–1.6 wt.% V was investigated. Creep tests were performed at various temperatures between room temperature and 205 °C at 95% of the respective yield stress at the different temperatures. The creep strain rate was found to increase with increasing temperature. Scanning and transmission electron microscopy revealed that slip and unusually slow twin growth, or time-dependent twinning, are active deformation mechanisms for the entire temperature range of this investigation. The activation energy for creep of this alloy was calculated to identify the rate-controlling deformation mechanism, and was found to increase with increasing creep strain. At low strain, the activation energy for creep was found to be close to the previously calculated activation energy for slip. At high strain, the calculated activation energy indicates that both slip and twinning are significant deformation mechanisms. The appearance of twinning at high strains is explained by a model for twin nucleation by dislocation pileups.  相似文献   

13.
In this paper, we report a series of large strain deformation experiments on initially annealed oxygen-free high conductivity (OFHC) Cu involving sequences of deformation path, temperature, and strain rate (quasi-static to dynamic). Experiments were conducted to obtain a comprehensive data set for the development and evaluation of internal state variable (ISV) models and for the investigation of different functional forms for internal state variable evolution. These included: (a) constant true strain rate tests at various temperatures, (b) load–unload–hold–reload tests at several nominal temperatures, and (c) sequence tests, including strain rate changes, temperature changes and deformation path changes. OFHC Cu demonstrates sensitivity to strain rate and temperature, and exhibits significant history effects. Implications of these data are discussed for the evaluation and development of models which account for deformation path, temperature, and strain rate history effects.  相似文献   

14.
A thermalactivation analysis was performed of experimental data on the strain and failure of 1201 T1, D16 T, and AK41 T1 aluminum alloys. The experiments were conducted under constant loads in creep conditions and under increasing loads. The duration of the tests was varied from fractions of a second to ten thousand hours, and the temperature ranged from 77 to 473 K. The rate activation parameters in the equations of steadystate creep and plastic strain were determined. Information was obtained on the relationship between plastic strain and failure. The plastic strain rate is shown to be affected by relaxation phenomena. The plastic characteristics of the alloys and their dependences on the temperature and time to failure are given.  相似文献   

15.
The shear fracture of dual-phase steel   总被引:1,自引:0,他引:1  
Unexpected fractures at high-curvature die radii in sheet forming operations limit the adoption of advanced high strength steels (AHSS) that otherwise offer remarkable combinations of high strength and tensile ductility. Identified as “shear fractures” or “shear failures,” these often show little sign of through-thickness localization and are not predicted by standard industrial simulations and forming limit diagrams. To understand the origins of shear failure and improve its prediction, a new displacement-controlled draw-bending test was developed, carried out, and simulated using a coupled thermo-mechanical finite element model. The model incorporates 3D solid elements and a novel constitutive law taking into account the effects of strain, strain rate, and temperature on flow stress. The simulation results were compared with companion draw-bend tests for three grades of dual-phase (DP) steel over a range of process conditions. Shear failures were accurately predicted without resorting to damage mechanics, but less satisfactorily for DP 980 steel. Deformation-induced heating has a dominant effect on the occurrence of shear failure in these alloys because of the large energy dissipated and the sensitivity of strain hardening to temperature increases of the order of 75 °C. Isothermal simulations greatly overestimated the formability and the critical bending ratio for shear failures, thus accounting for the dominant effect leading to the inability of current industrial methods to predict forming performance accurately. Use of shell elements (similar to industrial practice) contributes to the prediction error, and fracture (as opposed to strain localization) contributes for higher-strength alloys, particularly for transverse direction tests. The results illustrate the pitfall of using low-rate, isothermal, small-curvature forming limit measurements and simulations to predict the failure of high-rate, quasi-adiabatic, large-curvature industrial forming operations of AHSS.  相似文献   

16.
Shape memory polymers (SMPs) can retain a temporary shape after pre-deformation at an elevated temperature and subsequent cooling to a lower temperature. When reheated, the original shape can be recovered. Relatively little work in the literature has addressed the constitutive modeling of the unique thermomechanical coupling in SMPs. Constitutive models are critical for predicting the deformation and recovery of SMPs under a range of different constraints. In this study, the thermomechanics of shape storage and recovery of an epoxy resin is systematically investigated for small strains (within ±10%) in uniaxial tension and uniaxial compression. After initial pre-deformation at a high temperature, the strain is held constant for shape storage while the stress evolution is monitored. Three cases of heated recovery are selected: unconstrained free strain recovery, stress recovery under full constraint at the pre-deformation strain level (no low temperature unloading), and stress recovery under full constraint at a strain level fixed at a low temperature (low temperature unloading). The free strain recovery results indicate that the polymer can fully recover the original shape when reheated above its glass transition temperature (Tg). Due to the high stiffness in the glassy state (T < Tg), the evolution of the stress under strain constraint is strongly influenced by thermal expansion of the polymer. The relationship between the final recoverable stress and strain is governed by the stress–strain response of the polymer above Tg. Based on the experimental results and the molecular mechanism of shape memory, a three-dimensional small-strain internal state variable constitutive model is developed. The model quantifies the storage and release of the entropic deformation during thermomechanical processes. The fraction of the material freezing a temporary entropy state is a function of temperature, which can be determined by fitting the free strain recovery response. A free energy function for the model is formulated and thermodynamic consistency is ensured. The model can predict the stress evolution of the uniaxial experimental results. The model captures differences in the tensile and compressive recovery responses caused by thermal expansion. The model is used to explore strain and stress recovery responses under various flexible external constraints that would be encountered in applications of SMPs.  相似文献   

17.
This work is concerned with the thermal/mechanical characterization of the 6061 aluminum alloy stretched uniaxially in an elevated temperature environment. The resulting response is one of nonequilibrium where each local element reacts differently in terms of stress, strain and temperature. That is, the local strain and temperature rate change from one location to another with time. While the initial temperature in both the specimen and its surrounding are kept constant, thermal oscillation occurs when the specimen is strained uniaxially. The temperature in the solid decreases at first below the reference state and then increases. A reversal of heat flow takes place between the specimen and surrounding medium which typifies the nonequilibrium character of thermal/mechanical behavior in uniaxial specimens.Numerical results are obtained for loading rate of 1.27 × 10−4cm/s with initial equilibrium temperature of 25°, 75°, 125° and 175° C. Determined are the nonequilibrium conditions in the solid and on the surface. This is accomplished by considering a two-phase medium such that the surrounding air or gas can interact with the solid, both thermally and mechanically. The state of affairs at or near the solid/gas interface are transient in character; they cannot be preassigned as boundary conditions. The a priori specification of temperature and/or its gradient on solid cannot be justified as it can seriously affect analytical predictions.  相似文献   

18.
A variant of the multimodulus elasticity theory for isotropic materials is proposed under the assumption that the shear modulus in Hooke’s law is a constant and the volume modulus depends on the sign of the first invariant of the stress tensor. Plane problems (plane strain and generalized plane stressed state) and problems of plate bending are considered. Some examples are given. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 1, pp. 157–164, January–February, 2008.  相似文献   

19.
In this paper, the effect of uniaxial extension on the crystallization of an ethylene-based butane plastomer is examined by using rheometry coupled with differential scanning calorimetry (DSC). Uniaxial extension experiments were performed at temperatures below and above the peak melting point of the polyethylene in order to characterize its flow-induced crystallization behavior at extensional rates relevant to processing. The degree of crystallinity of the stretched samples was quantified by DSC, i.e., by analyzing the thermal behavior of samples after stretching. Analysis of the tensile strain-hardening behavior very near the peak melt temperature revealed that crystallization depends on temperature, strain, and strain rate. In addition, it was revealed that a very small window of temperatures spanning just 1–2°C can have a dramatic effect on polymer crystallization. Finally, flow-induced crystallization experiments at temperatures close to the peak melting point have shown the recrystallization of multiple crystalline structures within a polymer matrix, witnessed by double peaks within a narrow window of 89–93°C in the DSC thermographs, with the most demonstrable double peak behavior occurring at a temperature of 91°C, a temperature that is just 1°C cooler than the peak melt temperature of the polymer.  相似文献   

20.
In determining structure–property relations for plasticity at different size scales, it is desired to bridge concepts from the continuum to the atom. This raises many questions related to volume averaging, appropriate length scales of focus for an analysis, and postulates in continuum mechanics. In a preliminary effort to evaluate bridging size scales and continuum concepts with descritized phenomena, simple shear molecular dynamics simulations using the Embedded Atom Method (EAM) potentials were performed on single crystals. In order to help evaluate the continuum quantities related to the kinematic and thermodynamic force variables, finite element simulations (with different material models) and macroscale experiments were also performed. In this scoping study, various parametric effects on the stress state and kinematics have been quantified. The parameters included the following: crystal orientation (single slip, double slip, quadruple slip, octal slip), temperature (300 and 500 K), applied strain rate (106–1012 s−1), specimen size (10 atoms to 2 μm), specimen aspect ratio size (1:8–8:1), deformation path (compression, tension, simple shear, and torsion), and material (nickel, aluminum, and copper). Although many conclusions can be drawn from this work, which has provided fodder for more studies, several major conclusions can be drawn.
• The yield stress is a function of a size scale parameter (volume-per-surface area) that was determined from atomistic simulations coupled with experiments. As the size decreases, the yield stress increases.
• Although the thermodynamic force (stress) varies at different size scales, the kinematics of deformation appears to be very similar based on atomistic simulations, finite element simulations, and physical experiments.
Atomistic simulations, that inherently include extreme strain rates and size scales, give results that agree with the phenomenological attributes of plasticity observed in macroscale experiments. These include strain rate dependence of the flow stress into a rate independent regime; approximate Schmid type behavior; size scale dependence on the flow stress, and kinematic behavior of large deformation plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号