首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
P-type porous silicon (PS) structure has been prepared by anodic electrochemical etching process under optimized conditions. Photoluminescence studies of the PS structure show emission at longer wavelengths (red) for the excitation at 365 nm. Scanning electron microscope investigations of the PS surface confirm the formation of uniform porous structure, and the pore diameter have been estimated as 25 μm. Pd:SnO2/PS/p-Si heterojunction with top gold ohmic contact developed by conventional methods has been used as the sensor device. Sensing properties of the device towards liquefied petroleum gas (LPG) and NO2 gas have been investigated in an indigenously developed sensor test rig. The response and recovery characteristics of the sensor device at different operating temperatures show short response time for LPG. From the studies, maximum sensitivity and optimum operating temperature of the device towards LPG and NO2 gas sensing has been estimated as 69% at 180 °C and 52% at 220 °C, respectively. The developed sensor device shows a short response time of 25 and 57 s for sensing LPG and NO2 gases, respectively. Paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, Dec. 7–9, 2006.  相似文献   

2.
Electrochemical sensors using tubular yttria-stabilized zirconia (YSZ) and oxide sensing electrode (SE) were fabricated and examined for NOx detection at high temperatures. The mixed-potential-type NOx sensor using ZnO-SE gave the highest sensitivity to NOx among other single-type oxides tested as SEs in the temperature range of 600–700 °C. The response of the ZnO-attached device was a linear for the logarithm of NO2 (NO) concentrations from 40 to 450 ppm. The sensing mechanism of the sensor was discussed on the basis of the gas adsorption-desorption behavior, the catalytic activity data, and electrochemical behavior for oxides examined.  相似文献   

3.
The nanostructured thin NiO films with the thicknesses of 30–180 nm were examined as a sensing electrode (SE) for the planar mixed-potential-type yttria-stabilized zirconia (YSZ)-based NO2 sensor. The sensing characteristics were examined in the temperature range of 600–800 °C under the wet condition (5 vol.% water vapor). Among the NiO-SEs tested, the 60 nm-thick NiO-SE sintered at 1,000 °C was found to give the highest NO2 sensitivity in the NO2 concentration range of 50–400 ppm accompanying with fast response/recovery at the operating temperatures of 600–700 °C. The high NO2 sensitivity was attributed to the high catalytic activity for both electrochemical reactions of O2 and NO2 at the interface of NiO-SE/YSZ. The ultrathin gold layer with the thickness of about 60 nm was additionally formed on the 60 nm-thick NiO-SE to fabricate the laminated-type (60 nm NiO/60 nm Au)-SE. It was demonstrated that the use of this laminated (NiO–Au)-SE improved both the sensitivity and the selectivity to NO2.  相似文献   

4.
WO3 nanoparticles were prepared by evaporating tungsten filament under a low pressure of oxygen gas, namely, by a gas evaporation method. The crystal structure, morphology, and NO2 gas sensing properties of WO3 nanoparticles deposited under various oxygen pressures and annealed at different temperatures were investigated. The particles obtained were identified as monoclinic WO3. The particle size increased with increasing oxygen pressure and with increasing annealing temperature. The sensitivity increased with decreasing particle size, irrespective of the oxygen pressure during deposition and annealing temperature. The highest sensitivity of 4700 to NO2 at 1 ppm observed in this study was measured at a relatively low operating temperature of 50 °C; this sensitivity was observed for a sensor made of particles as small as 36 nm.  相似文献   

5.
Ultrafine-structure La0.65Sr0.35MnO3 (LSM) powders synthesized by self-propagating combustion method have been used to fabricate sensing electrodes (SEs) for NO2 mixed-potential sensors based on yttria-stabilized zirconia (YSZ). This type of sensor was found to provide better NO2 sensitivity at 500 °C than sensors with LSM powders synthesized by traditional solid-state methods. The response values of the sensor have good linear relationship (sensitivity 36.6 mV/decade and linear fit 0.99) with the logarithm of NO2 concentration varying from 30 to 500 ppm. The influence of sintering temperature (1000, 1100, 1200, and 1300 °C) on sensor response was also examined and was found to have a significant effect on the morphology of LSM-SEs. Moreover, in the presence of NO, CO2, CO, and NO2, the sensor exhibited good NO2 selectivity.  相似文献   

6.
ZnGa2O4 nanowires were synthesized using a thermal evaporation technique. Scanning electron microscopy, transmission electron microscopy, and X-ray diffraction revealed that the nanowires were single crystals 30–200 nm in diameter and ranged up to ~100 μm in length. The sensing properties of multiple networked ZnGa2O4 nanowire sensors functionalized with Au catalyst nanoparticles with diameters of a few nanometers toward NO2 gas at room temperature under UV irradiation were examined. The sensors showed a remarkably enhanced response and far reduced response and recovery times toward NO2 gas at room temperature under 254 nm-ultraviolet (UV) illumination. The response of ZnGa2O4 nanowires to NO2 gas at room temperature increased from ~100 to ~861 % with increasing the UV intensity from 0 to 1.2 mW/cm2. The significant improvement in the response of ZnGa2O4 nanowires to NO2 gas by UV irradiation is attributed to the increased change in resistance due to the increase in the number of electrons participating in the reactions with NO2 molecules by photo-generation of electron–hole pairs.  相似文献   

7.
Sub-stoichiometric tungsten trioxide (WO3) thin films are deposited onto the glass substrates by spray pyrolysis technique using ammonium metatungstate. Effect of solution concentration on structural, morphological, optical, electrical and NO2 sensing properties of WO3 thin films is studied. Films are polycrystalline with monoclinic crystal structure and sub-stoichiometric as observed form the XRD and XPS studies, respectively. The SEM and AFM images show micro grained structure and surface roughness increases with increase in solution concentration. The PL studies revealed that the majority of the defects are the oxygen vacancies. From XPS and PL studies it is observed that, oxygen vacancies decrease with increase in solution concentration. The dielectric constant of the films as a function of frequency is in concurrence with resistivity measurements. Films show reproducible and reversible gas response at various operating temperatures and gas concentrations. Highest sensor response (38%) towards 200 ppm NO2 concentration is observed for the film with 15 mM solution concentration at moderate operating temperature (200 °C). Pd sensitization enhanced gas response to 68% and improved kinetics of the sensor. Films are highly selective towards NO2 as compared with the various gases such as SO2, LPG, NH3 and H2S.  相似文献   

8.
The dispersal of CuO catalyst on the surface of the semiconducting SnO2 film is found to be of vital importance for improving the sensitivity and the response speed of a SnO2 gas sensor for H2S gas detection. Ultra-thin CuO islands (8 nm thin and 0.6 mm diameter) prepared by evaporating Cu through a mesh and subsequent oxidation yield a fast response speed and recovery. Ultimately nanoparticles of Cu (average size = 15 nm) prepared by a chemical technique using a reverse micelle method involving the reduction of Cu(NO3)2 by NaBH4 exhibited significant improvement in the gas sensing characteristics of SnO2 films. A fast response speed of ∼14 s and a recovery time of ∼60 s for trace level ∼20 ppm H2S gas detection have been recorded. The sensor operating temperature (130° C) is low and the sensitivity (S = 2.06 × 103) is high. It is found that the spreading over of CuO catalyst in the nanoscale range on the surface of SnO2 allows effective removal of excess adsorbed oxygen from the uncovered SnO2 surface due to spill over of hydrogen dissociated from the H2S-CuO interaction.  相似文献   

9.
Nickel oxide and chromium-doped nickel oxide (Ni0.95Cr0.03O1−δ ) were prepared by thermal decomposition of nitrates. The obtained NiO and Ni0.95Cr0.03O1−δ samples were utilized as sensing electrodes (SEs) in yttria-stabilized zirconia (YSZ)-based sensors for detection of NO2 at 800 °C under wet condition (5 vol.% H2O). While the mixed-potential-type planar sensor attached with NiO-SE gave rather large NO2 sensitivity, the sensor attached with Ni0.95Cr0.03O1−δ -SE exhibited fast recovery rate with an acceptable sensitivity. The Δemf (electromotive force) of the sensors varied linearly with NO2 concentration in the examined range of 50–400 ppm on a logarithmic scale. Based on the results of measurements for polarization, complex impedance and gas phase catalysis, the fast recovery was attributable to the high rate for the anodic reaction of O2 at the Ni0.95Cr0.03O1−δ /YSZ interface, and the lower NO2 sensitivity was caused by both the high rate for the anodic reaction of O2 and the high degree for the gas phase conversion of NO2 to NO.  相似文献   

10.
陈慧卿  胡明  曾晶  王巍丹 《中国物理 B》2012,21(5):58201-058201
The NO2 gas sensing behavior of porous silicon(PS) is studied at room temperature with and without ultraviolet(UV) light radiation.The PS layer is fabricated by electrochemical etching in an HF-based solution on a p +-type silicon substrate.Then,Pt electrodes are deposited on the surface of the PS to obtain the PS gas sensor.The NO2 sensing properties of the PS with different porosities are investigated under UV light radiation at room temperature.The measurement results show that the PS gas sensor has a much higher response sensitivity and faster response-recovery characteristics than NO2 under the illumination.The sensitivity of the PS sample with the largest porosity to 1 ppm NO2 is 9.9 with UV light radiation,while it is 2.4 without UV light radiation.We find that the ability to absorb UV light is enhanced with the increase in porosity.The PS sample with the highest porosity has a larger change than the other samples.Therefore,the effect of UV radiation on the NO2 sensing properties of PS is closely related to the porosity.  相似文献   

11.
《Current Applied Physics》2015,15(7):789-793
NiFe2O4 thin film with high porosity based gas sensors had been prepared and their microstructure and gas sensing property were investigated. The sensing layer, consisted of perpendicular overlapped NiFe2O4 chains which were induced by altering magnetic field to self-assemble, had high porosity. The phase character and porous microstructure were characterized by X-ray diffraction (XRD) and a polarizing optical microscopy. The gas sensing tests results indicated that the sensor presented a high sensitivity to NH3 at 150 °C, and was selective to NH3 below 200 °C. The large porosity microstructure should benefit the reaction between target gas and sensing material and the detection of low concentration gas at low working temperature. In repeatability tests, the response and recovery time values had only narrow fluctuations.  相似文献   

12.
We developed new fast proton conducting membranes based on a hybrid inorganic–organic phosphosilicate polymer synthesized from othophosphoric acid, dichlorodimethylsilane, and tetraethoxysilane. The membranes were amorphous, translucent, and flexible. A high concentration of –OH groups and short distances between them promoted fast proton conductivity in dry atmosphere at increased temperatures. The proton conductivity was measured using the electrochemical impedance spectroscopy. Its value increased with rising temperature following the Arrhenius dependence with the activation energy 20 kJ/mol. In dry conditions at 120 °C, the conductivity was 1.6 S/m. The tests in a H2/O2 fuel cell confirmed that the membrane was able to operate at temperatures from 100 to 130 °C using dry input gas streams. The cell performance significantly improved with increasing temperature. The membrane was also tested in a potentiometric gas sensor with the TiHx reference electrode and the Pt sensing electrode. The sensor exhibited fast, stable, and reproducible response to dry H2 and O2 gases at temperatures above 100 °C. We expect the application of our membrane in intermediate temperature fuel cells and gas sensors operating in dry conditions.  相似文献   

13.
Polypyrrole–nickel oxide (PPy–NiO) hybrid nanocomposite thin-film sensor was prepared by spin-coating method on glass substrate. The PPy–NiO hybrid nanocomposite thin film sensors were used to study room temperature gas-sensing properties for oxidizing (NO2, Cl2) as well as reducing (NO2, H2S, C2H5OH, NH3, and Cl2) gases. It was revealed that PPy–NiO (50 %) hybrid nanocomposite thin-film sensor could detect NO2 at low concentration (100 ppm) with very high selectivity (47 % compared with Cl2) and high sensitivity (47 %), with better stability (90 %) and reproducibility. The response and recovery times were changed significantly with NO2 concentration.  相似文献   

14.
This work studied the possibility of using a sensor based on plasma-sprayed zinc oxide (ZnO) sensitive layer for NO2 detection. The atmospheric plasma spray process was employed to deposit ZnO gas sensing layer and the obtained coating structure was characterized by scanning electron microscopy and X-ray diffraction analysis. The influences of gas concentration, working temperature, water vapor in testing air on NO2 sensing performance of the ZnO sensors were studied. ZnO sensors showed a good sensor response and selectivity to NO2 at an optimal working temperature.  相似文献   

15.
The effect of thickness of oxide-sensing electrode (SE) on NO2 sensitivity of the planar sensor based on yttria-stabilized zirconia (YSZ) was examined at high temperatures. The sensitivity of the sensor increased with decreasing thickness of SE, and the highest sensitivity was obtained by using the thinnest layer of Cr2O3–SE (2.7 μm) at 700 °C. In the case of NiO–SE, the highest sensitivity was observed for the sensor using the 4-μm-thick SE even at a high temperature of 850 °C. Based on the results of the measurements for the complex impedances, the polarization curves, and the gas-phase NO2 decomposition catalysis, it was confirmed that the catalytic activity to the gas-phase NO2 decomposition on the oxide–SE matrix played an important role in determining the NO2 sensitivity of the present sensors.  相似文献   

16.
We report a rapid and simple process to massively synthesize/grow ZnO nanowires capable of manufacturing massive humidity/gas sensors. The process utilizing a chemical solution deposition with an annealing process (heating in vacuum without gas) is capable of producing ZnO nanowires within an hour. Through depositing the ZnO nanowires on the top of a Pt-interdigitated-electrode/SiO2/Si-Wafer, a humidity/gas-hybrid sensor is fabricated. The humidity sensitivity (i.e., ratio of the electrical resistance of the sensor at 11–95 % relative humidity level) is approximately 104. The response and recovery time with the humidity changing from 11 to 95 % directly and reversely is 6 and 10 s, respectively. The gas sensitivity (i.e., ratio of electrical resistance of the sensor under the air to vaporized ethanol) is increased from 2 to 56 when the concentration of the ethanol is increased from 40 to 600 ppm. Both the response and recovery times are less than 15 s for the gas sensor. These results show the sensor utilizing the nanowires exhibits excellent humidity and gas sensing.  相似文献   

17.
G. Lu  Dr. N. Miura  N. Yamazoe 《Ionics》1998,4(1-2):16-24
Stabilized zirconia-based electrochemical devices for which the sensing electrode was provided with a single-metal oxide were tested for NO and NO2 sensing properties at high temperature. Among the many single-metal oxides examined, WO3 was found to give the best sensing properties to NO and NO2 at 500–700°C. The EMF response of the WO3-attached device was linear to the logarithm of NO or NO2 concentration. The response and recovery kinetics were speedy. The device gave very small cross-sensitivities to H2, CO, CH4, CO2 and water vapor. The sensing mechanism involving mixed-potential was confirmed from the measurements of polarization curves.  相似文献   

18.
P. Shuk  E. Bailey  J. Zosel  U. Guth 《Ionics》2009,15(2):131-138
Mixed potential solid electrolyte CO sensors with sensing electrodes based on composite with various semiconducting oxides were extensively studied in the temperature range 500–650 °C for sensitivity, stability and cross-sensitivity besides CO to other combustion components like CO2, H2O, O2, and SO2. The highest CO sensitivity was found for the CO sensor with composite electrode based on Au/Ga2O3 showing also good reproducibility and stability in hazardous combustion environment. CO sensor response behavior in non equilibrated oxygen containing gas mixtures is mainly determined by the catalytic activity of the measuring electrode and depends strongly on preparation and measuring conditions. Mixed oxides based on doped chromites show only a little sensitivity to CO. CO sensor based on Au/Ga2O3 composite electrodes was showing good CO selectivity in the presence of other combustion gas species and finally was tested in combustion environment at power plant. Paper presented at the 11th EuroConference on the Science and Technology of Ionics, Batz-sur-Mer, Sept. 9–15, 2007.  相似文献   

19.
《Current Applied Physics》2010,10(4):1002-1004
In this study, we demonstrated that graphene could selectively absorb/desorb NOx molecules at room temperature. Chemical doping with NO2 molecules changed the conductivity of the graphene layers, which was quantified by monitoring the current–voltage characteristics at various NO2 gas concentrations. The adsorption rate was found to be more rapid than the desorption rate, which can be attributed to the reaction occurred on the surface of the graphene layer. The sensitivity was 9% when an ambient of 100 ppm NO2 was used. Graphene-based gas sensors showed fast response, good reversibility, selectivity and high sensitivity. Optimization of the sensor design and integration with UV-LEDs and Silicon microelectronics will open the door for the development of nano-sized gas sensors that are extremely sensitive.  相似文献   

20.
Sensing characteristics of ZnO, In2O3 and WO3 nanowires have been investigated for the three nitrogen oxides, NO2, NO and N2O. In2O3 nanowires of ∼20 nm diameter prepared by using porous alumina membranes are found to have a sensitivity (defined as the ratio of the sensor resistance in the gas concerned to that in air) of about 60 for 10 ppm of all the three gases at a relatively low temperature of 150 °C. The response and recovery times are around 20 s. The sensitivity of these In2O3 nanowires is around 40 for 0.1 ppm of NO2 and N2O at 150 °C. WO3 nanowires of 5–15 nm diameter, prepared by the solvothermal process show a sensitivity of 20–25 for 10 ppm of the three nitrogen oxides at 250 °C. The response and recovery times are 10 s and 60 s, respectively. The sensitivity is around 10 for 0.1 ppm of NO2 at 250 °C. The sensitivity of In2O3 and WO3 nanowires is not affected by humidity even up to 90% relative humidity. The study also reveals that the sensing mechanism for the three nitrogen oxides have a commonality in that the desorption of oxygen is a crucial step in all the cases. PACS 07.07.Df; 85.35.-p; 82.35.Np  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号