首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 925 毫秒
1.
Schiff碱铜配合物模拟过氧化物酶的研究   总被引:9,自引:0,他引:9  
两种Schiff碱铜配合物首次作为过氧化物酶的模拟物用于催化过氧化氢氧化苯酚的反应;分析了配合物的特征光谱;研究了Schiff碱铜配合物的催化氧化机理,建立了催化氧化反应动力学数学模型;讨论了过氧化氢/催化剂摩尔比、体系温度、体系pH和胶束微环境对催化反应速率的影响.结果表明:这两种Schiff碱铜配合物在不同的反应条件下均表现出过氧化物酶催化的特征.  相似文献   

2.
咪唑衍生物金属胶束模拟过氧化物酶研究   总被引:2,自引:0,他引:2  
咪唑衍生物铜配合物Cu(biap)·Cl2及其与胶束形成的金属胶束模拟过氧化物酶成功地用于催化H2O2氧化苯酚反应,反应遵循酶催化的动力学规律.过氧化氢/催化剂物质的量比和酸度对反应的影响符合生物催化剂条件影响的一般规律.讨论了不同类型表面活性剂胶束对该氧化反应的影响.  相似文献   

3.
将一系列苯并-10-氮杂-15-冠-5或吗啉基取代的不对称双Schiff碱配合物作为催化剂,在常压和120℃条件下用于催化氧化对二甲苯研究。探讨了Schiff配合物中心金属离子、Schiff碱配体中挂接的氮杂冠醚环、配体芳环上取代基等对催化氧化对二甲苯反应活性及其氧化产物选择性的影响。实验结果表明:配合物中氮杂冠醚的存在能显著缩短反应诱导期、提高催化活性和选择性;Schiff碱Mn(Ⅲ)配合物比Schiff碱Co(Ⅱ)和Schiff碱Cu(Ⅱ)具有更高的催化活性;氮杂冠醚Schiff碱Mn(Ⅲ)配合物催化氧化二甲苯的转化率和产物选择性分别达75%和90%。  相似文献   

4.
本文合成和表征了配合物Fe2EDTB。配合物Fe2EDTB与非离子表面活性剂B rij35组成的金属胶束作为模拟过氧化物酶催化H2O2氧化苯酚反应表现出了良好的催化活性。根据本文所提出的Fe2EDTB配合物催化H2O2氧化苯酚反应的机理可以较好地解释过氧化氢/催化剂物质的量比、反应体系的温度、反应体系的酸度对反应的影响。  相似文献   

5.
合成和表征了两种对称的带冠醚环或吗啉环的Schiff碱Co(Ⅱ)配合物,将此配合物和表面活性剂形成的金属胶束,用于模拟水解金属酶催化BNPP水解。通过分析反应体系的特性吸收光谱,提出了BNPP催化水解反应的机理,据此建立了金属胶束催化BNPP水解的动力学数学模型。本文还讨论了配合物结构、反应体系温度以及胶束对催化BNPP水解的影响。  相似文献   

6.
本文将苯并-10-氮杂-15-冠-5或吗啉基取代的单Schiff碱过渡配合物作为催化剂,在常压和120℃条件下,以空气为氧源,研究了对二甲苯催化氧化反应。实验探讨了Schiff碱配合物中心金属离子、Schiff碱配体中挂接的氮杂冠醚环、配体芳环上取代基和反应时间等对对二甲苯催化氧化反应的影响。实验结果表明:Schiff碱配合物中氮杂冠醚的存在能显著缩短反应诱导期,提高催化反应活性和产物选择性;Schiff碱Mn(III)配合物比Schiff碱Co(II)具有更高的催化反应活性;氮杂冠醚Schiff碱Mn(III)配合物对于二甲苯的催化氧化反应转化率大于60%,对甲苯甲酸产物的选择性均高于70%。  相似文献   

7.
组氨酸水杨醛Schiff碱铜(Ⅱ)配合物催化氧化β-紫罗兰酮的反应;β-紫罗兰酮;氧代-β-紫罗兰酮;Schiff碱;铜(Ⅱ)配合物;催化氧化  相似文献   

8.
异双核配合物金属胶束模拟磷酸酯酶催化磷酸单酯水解   总被引:1,自引:0,他引:1  
 合成和表征了四种含过渡金属离子Cu(Ⅱ)和Ni(Ⅱ)的草酰胺桥联异双核配合物,并将这些配合物与Brij35表面活性剂胶束构成金属胶束作为金属水解酶模拟物用于催化对硝基苯酚磷酸单酯(NPP)水解. 研究了金属胶束对NPP水解反应的催化机理,建立了异双核配合物催化NPP水解的动力学数学模型. 结果表明,四种草酰胺桥联异双核配合物在NPP水解反应中表现出较高的催化活性,随着胶束溶液pH的增大,配合物催化NPP水解的速率提高. 配合物中的两个金属离子在催化NPP水解过程中表现出较好的协同效应.  相似文献   

9.
冠醚化Schiff 碱配合物金属胶束催化BNPP水解动力学   总被引:3,自引:0,他引:3  
研究了两种新的冠醚化Schiff 碱过渡金属配合物与表面活性剂Brij35(聚氧乙烯(23)十二烷基醚)形成的金属胶束对BNPP(对硝基苯酚磷酸二酯)的催化水解反应. 探讨了催化反应机理, 建立了一种金属胶束催化BNPP水解的动力学数学模型; 计算了模拟酶催化反应的相关参数和表观活化能. 结果表明, 此类金属胶束作为模拟水解金属酶对BNPP水解反应表现出良好的催化活性.  相似文献   

10.
含杂氮冠醚的Schiff碱过渡金属配合物作为模拟水解酶被用于催化BNPP水解,讨论了两种杂氮冠醚化单Schiff碱钴(Ⅱ)配合物催化BNPP水解的动力学和机理,分析了反应体系的特征光谱变化。提出了配合物催化BNPP水解的动力学数学模型,结果表明,在反应过程中形成中间物种的假设是合理的;随着缓冲溶液pH的增大,两种配合物催化BNPP水解速率提高;两种配合物在催化BNPP水解中表现出好的催化活性。  相似文献   

11.
The two Schiff base cobalt(II) complexes, CoL1 and CoL2, were synthesized and characterized. The metallomicelle made up of the cobalt(II) complexes and surfactants (CTAB, LSS and Brij35), as mimic peroxidase metalloenzyme, were used in the catalytic oxidation of phenol by H2O2. The mechanism and a kinetic mathematic model of the phenol catalytic oxidation were studied. The acid effect of reaction system, structural effect of the complexes, and effect of temperature on the rate of the phenol oxidation catalyzed by the mimetic peroxidases have been discussed. The results showed that the schiff base cobalt(II) complexes and their metallomicelles as peroxidase mimics exhibit good catalytic activity and similar catalytic character to natural enzyme.  相似文献   

12.
Three novel cobalt(II) complexes of the benzoaza-15-crown-5 Schiff base, CoL1, CoL2, and CoL3 were synthesized and characterized. Metallomicelles made from CoL and surfactants (CTAB, LSS, and Brij35) were used as mimetic peroxidase in the catalytic oxidation of phenol by H2O2. For comparison, the catalytic activity of the complexes (CoL1, CoL2, and CoL3) were also investigated. The mechanism and a kinetic mathematic model of the phenol catalytic oxidation were studied. The acid effect of reaction system, structural effect of the complexes, and effect of temperature on the rate of the phenol catalytic oxidation by the mimetic peroxidase were discussed. The results show that the Schiff base cobalt(II) complexes and their metallomicelles as peroxidase mimics exhibit good catalytic activity and similar catalytic character to natural enzyme.  相似文献   

13.
Synthetic oxygen carriers are of great interest as models to mimic oxygen-carrying metalloenzymes for oxygen storage and transport1,2. Moreover, they possess great significance to realize high efficiency and selectivity catalytic oxidation of organic subs…  相似文献   

14.
The synthesis and characterization of two new acetato-bridged dinuclear copper(II) complexes are described. Both compounds have the general formula [Cu(L)(µ-O2C–CH3)]2, in which L = 4-bromo-2-((4-methylpyridin-2-ylimino)methyl)phenol or 4-bromo-2-((6-methylpyridin-2-ylimino)methyl)phenol. The title compounds consist of dinuclear units with bridging acetato groups and a ligand linked to each copper via the phenol oxygen and nitrogen. Both compounds were synthesized in a one-step reaction and characterized by elemental analysis, Fourier transform infrared (FTIR), electron spin resonance (ESR), and electronic spectra and by room temperature magnetic moments. The compounds exhibit antiferromagnetic interactions at room temperature. UV-Vis spectra show four absorptions attributed to d–d transitions of copper, ligand → metal charge transfer and π π* or n π* transitions of ligand. The FTIR spectra indicate a Cu2O4C2 ring vibration. Both complexes show room temperature magnetic moments of about 1.6 B.M. per copper. The X-band ESR studies indicate a weak half-field band, characteristic of the Cu(II)–Cu(II) dimer, observed at 1552 and 1558 G for the complexes, strongly suggesting that the hyperfine structure arises from a spin triplet species. The spectra of frozen samples in DMSO or DMF at liquid nitrogen temperature show a typical Δm = 1 transition.  相似文献   

15.
Cobalt(II) and copper(II) complexes with three dioxime ligands cyclohexylamine-p-tolylglyoxime (L1H2), tert-butyl amine-p-tolylglioxime (L2H2) and sec-butylamine-p-tolylglyoxime (L3H2), have been prepared. The metal to ligand ratios of the complexes were found to be 1?:?2. The Cu(II) complexes of these ligands are proposed to be square planar; the Co(II) complexes are proposed to be octahedral with water molecules as axial ligands. Ligands and complexes are soluble in common solvents such as DMSO, DMF, CHCl3 and C2H5OH. The ligands have been characterized by elemental analysis, IR, UV-VIS, 1H?NMR, 13C?NMR and thermogravimetric analysis (TGA). The complexes were characterized by elemental analysis, IR, UV-VIS, magnetic susceptibility measurements, thermogravimetric analysis (TGA) and electrochemistry. Electrochemical properties of metal complexes show quasi-reversible one-electron redox processes. However, Co(L1H)2 and Cu(L1H)2 complexes show another oxidation peak in the positive region. This single irreversible oxidation peak is caused by the cyclic ring of the ligand. Data also revealed that the electron transfer rates of metal complexes with L1H2 are higher than the other complexes.  相似文献   

16.
Copper(II) and palladium(II) complexes with 15-membered asymmetric 5,9-dihydro-2,4,10,12-tetramethyl-1,5,9,13-monobenzotetraazacyclo[15]tetradecine have been synthesized and characterized. The electrochemical behaviors of the complexes showed a reduction and two one-electron irreversible oxidation waves in given potential ranges due to the metal ion and macrocycle ring, respectively. The electrocatalytic reduction of dioxygen on glassy carbon electrodes electropolymerized by such 15-membered and 14-membered tetraazaannulene complexes occurred at 160–280 mV (versus SCE), less negative than on the bared one at pH 7.0. The catalytic activities of the copper(II) complexes in the oxidation of p-Xstyrene (X = OCH3, CH3, H, F, Cl) were higher than those of the palladium(II) ones. The structures of the 15-membered copper(II) and palladium(II) complexes were determined using the X-ray diffraction method.  相似文献   

17.
Abstract

Four new Schiff-base ligands have been prepared from the condensation of 3-formyl-4-hy-droxy-1,8-naphthyridin-2-one with different diamines and a triamine, H2La-H2Ld. Two series of Ni(II) and Cu(II) complexes with the four ligands were also prepared. The ligands and their metal complexes were characterized by chemical analyses, IR, Far-IR, electronic, ESR and mass spectra as well as magnetic measurements and X-ray diffraction patterns.

Different products for Ni(II) and Cu(II) were obtained in similar reactions with the same metal salt, depending on the nature of the ligand. Different geometries were also obtained depending on the counter anion of metal salt. Thus, violet square-planar Cu(II) complexes were obtained with Cu(OAc)2. H2O and green octahedral ones with CuCl2. 2H2O, except the reaction with ligand H2Ld which gave only an octahedral product whether the anion was acetate, chloride or perchlorate. Electronic and ESR spectra were used to differentiate between the two geometries of the Cu(II) complexes. The green octahedral Cu(II) complexes undergo irreversible thermochromism to the violet square-planar complexes except the copper complex of the ligand H2Ld which did not not show any color change and retained its octahedral geometry. Based on the magnetic moments and thermal analyses, only one Ni(II) complex of the Schiffbase ligand H2Lc undergoes reversible thermochromism from green (octahedral) to red (squareplanar). The reverse change of the thermal product (red) to the parent complex (green) proceeded on exposure to atmospheric air for a few minutes. On the other hand, Ni(II) complexes of ligands H2La and H2Lb have stable square-planar geometry and all efforts to add other ligands such as H2O or pyridine to these complexes failed to yield other products. The corresponding Cu(II) complexes were easily transformed to their octahedral geometry by adding H2O or pyridine and heating.  相似文献   

18.
A bioactive Schiff base HL i.e. 2‐hydroxy‐benzoic acid(3,4‐dihydro‐2H ‐naphthalen‐1‐ylidene)‐hydrazide was synthesized by reacting equimolar amount of salicylic acid hydrazide and 1‐tetralone. Co(II), Ni(II) and Zn(II) complexes of ligand HL was synthesized in 1:1 and 1:2 molar ratio of metal to ligand. The structure of the synthesized ligand and metal complexes was established by elemental analysis, molar conductance, magnetic susceptibility measurements, electronic, IR and EPR spectral techniques. For determining the thermal stability the TGA has been done. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6–31 + g(d,p) basis set. Spectral data reveal that ligand behave uninegative tridentate in ML complexes and uninegative bidentate in ML2 complexes. On the basis of characterization octahedral geometry has been assigned for Co(II) and Ni(II) complexes, while tetrahedral for Zn(II) complexes. Antibacterial activity of the synthesized compounds were evaluated against Staphylococcus aureus , Bacillus subtilis, Escherichia coli , Xanthomonas campestris and Pseudomonas aeruginosa and the results revealed that metal complexes show enhanced activity in comparison to free ligand.  相似文献   

19.
A unique hexanuclear zinc(II) ( 1 ) and two mononuclear copper(II) ( 2 and 3 ) complexes anchored with imino phenol ligand HL 1 and HL 2 were synthesized with good yield and purity (where HL 1  = 4‐tert‐butyl‐2,6‐bis((mesitylimino)methylphenol and HL 2   =  5‐tert‐butyl‐2‐hydroxy‐3‐((mesitylimino)methyl)benzaldehyde). These complexes were characterized by utilizing various spectroscopic protocols like NMR, FTIR, UV as well as ESI‐Mass spectrometry, elemental analysis and single crystal X‐ray diffraction studies. Their potential to bind calf thymus DNA (CT‐DNA) was tested utilizing different techniques such as UV–visible and fluorescence spectroscopy. The experiment implies that they interact with CT‐DNA via non‐intercalative mode with moderate capabilities (Kb ~ 104 M?1). On the other hand, these complexes have high capabilities to quench the fluorescence of bovine serum albumin (BSA) following the static pathway. In addition, they are active catalysts for the oxidation reaction of 3,5‐di‐tert‐butylcatechol (3,5‐DTBC) to 3,5‐di‐tert‐butylquinone (3,5‐DTBQ) under aerobic condition. From the recorded EPR signals of all complexes, it has been concluded that the oxidation reaction proceeds via ligand oriented radical pathway instead of metal based redox participation. Kinetic studies using 1 – 3 indicate that it follows Michaelis–Menten type of equation with moderate to high turnover number (kcat). Apart from these aspects, complexes 1 – 3 were screened for their cytotoxic behavior towards HeLa cells (human cervical carcinoma) and found quite active with comparable IC50 values to cisplatin.  相似文献   

20.
The reactions of nickel(II), copper(II), and zinc(II) acetate salts with a potentially tetradentate biphenyl-bridged bis(pyrrole-2-yl-methyleneamine) ligand yielded three complexes with different coordination geometries. X-ray crystal structural analysis reveals that in the nickel(II) complex each nickel is five-coordinate, distorted trigonal bipyramid. In the copper(II) complex, each copper is four-coordinate, between square planar and tetrahedral. In the zinc(II) complex, each zinc is four-coordinate with a distorted tetrahedral geometry and the molar ratio of the zinc and ligand is 1 : 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号