首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three novel cobalt(II) complexes of the benzoaza-15-crown-5 Schiff base, CoL1, CoL2, and CoL3 were synthesized and characterized. Metallomicelles made from CoL and surfactants (CTAB, LSS, and Brij35) were used as mimetic peroxidase in the catalytic oxidation of phenol by H2O2. For comparison, the catalytic activity of the complexes (CoL1, CoL2, and CoL3) were also investigated. The mechanism and a kinetic mathematic model of the phenol catalytic oxidation were studied. The acid effect of reaction system, structural effect of the complexes, and effect of temperature on the rate of the phenol catalytic oxidation by the mimetic peroxidase were discussed. The results show that the Schiff base cobalt(II) complexes and their metallomicelles as peroxidase mimics exhibit good catalytic activity and similar catalytic character to natural enzyme.  相似文献   

2.
The Schiff base complexes containing a transition metal ion, CoII and CuII, were used as mimetic peroxidase in the catalytic oxidation of phenol by H2O2. The characteristic spectra of the Schiff base complexes in H2O2-buffered solution were recorded and analyzed, respectively. The mechanism and the kinetic mathematic model of the phenol catalytic oxidation were studied. The results showed that the Schiff base complexes containing the transition metal ion, CoII and CuII, as peroxidase mimics exhibited good catalytic activity and the character of the peroxidase in the catalytic oxidation of phenol by H2O2 under different conditions.  相似文献   

3.
Three novel Schiff base cobalt(Ⅱ) complexes containing benzoaza-15-crown-5, CoL^1, CoL^2 and CoL^3 were synthesized and characterized, and these complexes were used in catalytic hydrolysis of carboxylic ester (PNPP, p-nitrophenyl picolinate) as mimic hydrolytic metalloenzyme. The analysis of specific absorption spectra of the hydrolytic reaction systems indicated that the catalytic hydrolysis involved the key intermediates formed by PNPP with cobalt(Ⅱ) complexes. The CoL^3 bearing the electron withdrawing group shows better catalytic activity due to its stabilization effect on active species MLS^-. The catalytic mechanism of PNPP hydrolysis was also proposed. The kinetic parameter of PNPP catalytic hydrolysis has been calculated and the activation energy for the catalytic hydrolysis is 43.69, 39.76 and 35.44 kJ·mol^-1, respectively.  相似文献   

4.
Metallomicelles made from two Schiff base manganese(III) complexes (MnL1 and MnL2) and surfactants (CTAB and Brij35) were used as mimetic peroxidase in the catalytic oxidation of phenol by H2O2. The catalytic activity of the complexes (MnL1 and MnL2) were investigated. The mechanism and a kinetic mathematic model of the phenol catalytic oxidation were also studied. The results show the optimum acidity of the enzyme-like system in the paper is ca. pH 7.0, the optimum temperature which is ca. 35°C and the optimum molar ratio of H2O2 to the complex is ca. 30 in the complexes-H2O2-buffered solution; the Schiff base manganese(III) complexes and their metallomicelles as peroxidase mimics exhibit good catalytic activity and similar catalytic character to natural enzyme.  相似文献   

5.
Two cobalt(Ⅱ) complexes of the Schiff base with morpholino or aza-crown ether pendants, CoL^1 and CoL^2, as mimic hydrolytic metalloenzyme, were used in catalytic hydrolysis of carboxylic ester (PNPP). The analysis of specific absorption spectra of the hydrolytic reaction systems indicates that key intermediates, made up of PNPP and Co(Ⅱ) complexes, have been formed in reaction processes of the PNPP catalytic hydrolysis. The mechanism of PNPP catalytic hydrolysis has been proposed based on the analytic result of specific absorption spectrum. A kinetic mathematical model, applied to the calculation of the kinetic parameter of PNPP catalytic hydrolysis, has been established based on the mechanism proposed. The acid effect of buffer solution, structural effect of the complexes, and effect of temperature on the rate of PNPP hydrolysis catalyzed by the complexes have been also discussed.  相似文献   

6.
Two novel unsymmetrical bis-Schiff base manganese(III) and cobalt(II) complexes with benzo-10-aza-crown ether pendants (MnL1Cl, CoL1), and their analogoues with morpholino pendants (MnL2Cl, CoL2), have been synthesized and employed as models to mimic hydrolase in p-nitrophenyl picolinate (PNPP). The kinetics and the mechanism of PNPP hydrolysis catalyzed by these complexes were investigated. A kinetic mathematical model of PNPP cleavage catalyzed by these complexes was proposed. The effects of the complexes structure and reactive temperature on the rate of catalytic PNPP hydrolysis have been also examined. The results showed that the rate for the catalytic PNPP hydrolysis increased following the increase in pH of the buffer solution; four complexes exhibited high activity in the catalytic PNPP hydrolysis. Compared with the crown-free analogoues MnL2Cl and CoL2, the crowned Schiff base complexes (MnL1Cl, CoL1) exhibit a higher catalytic activity; the pseudo-first-order-rate (kobs) for the PNPP hydrolysis catalyzed by the complex MnL1Cl containing benzo-10-aza-crown ether is 1.04 × 103 that of spontaneous hydrolysis of PNPP at pH = 7.00, [S] = 2.0×10−4 mol dm−3.  相似文献   

7.
The imidazole derivatives (N,N‐bis(2‐ethyl‐5‐methyl‐imidazole‐4‐ylmethyl) amino‐propane (biap)) and its complexes containing cobalt or copper ion were synthesized in this study. The oxidation reaction of phenol with oxidant H2O2 catalyzed by the metallomicelle made of the complexes of imidazole groups and micelle (CTAB, Brij35, LSS) as the mimetic peroxidase was studied. The results show that the reaction rate for the catalytic oxidation of phenol increases by a factor of approximately 1×105 in the metallomicelle over that in the simple micelles or the pure buffer solution at pH=6.9 and 25°C. The catalytic effects changed with H2O2, temperature, pH, and surfactant kind in the catalytic reactive process are discussed. A kinetic mathematic model of the phenol oxidation catalyzed by the metallomicelle is proposed.  相似文献   

8.
两种含5-取代苯并-10-氮杂-15-冠-5的Schiff碱锰(III)、钴(II)配合物( , )及其吗啉基取代的类似物( , ) 用于催化α-吡啶甲酸对硝基苯酯(PNPP)水解。探讨了氮杂冠醚Schiff 碱配合物催化PNPP水解的动力学和机理;提出了配合物催化PNPP水解的动力学模型;考察了配合物结构、反应温度、缓冲溶液pH值等对PNPP水解反应的影响。结果表明,在25℃条件下随着缓冲溶液pH值的增大,催化PNPP水解速率提高;含取代苯并-10-氮杂-15-冠-5的Schiff碱配合物表现出更高的催化活性。根据阿累尼乌斯公式和不同温度下的表观一级常数求出水解反应的表观活化能。  相似文献   

9.
Abstract  Mono-Schiff base manganese(III) and cobalt(II) complexes with either benzo-10-aza-crown ether pendants (MnL1 2 Cl, CoL1 2) or morpholino pendants (MnL2 2Cl, CoL2 2) have been employed as models for hydrolase enzymes by studying the kinetics of their hydrolysis reactions with p-nitrophenyl picolinate (PNPP). A kinetic model of PNPP cleavage catalyzed by these complexes is proposed. The effects of complex structures and reaction temperature on the rate of catalytic PNPP hydrolysis have been also examined. The rate increases with pH of the buffer solution; all four complexes exhibited high activity in the catalytic PNPP hydrolysis. Compared with the crown-free analogues MnL2 2Cl and CoL2 2, the crowned Schiff base complexes (MnL1 2Cl, CoL1 2) exhibit higher catalytic activity. The pseudo-first-order-rate ( k obs ) for the PNPP hydrolysis catalyzed by the complex MnL1 2Cl containing benzo-10-aza-crown ether is 1.06 × 103 times that of spontaneous hydrolysis of PNPP at pH = 7.00, 25 °C, [S] = 2.0 × 10−4 mol dm−3. Graphical Abstract   Studies on p-nitrophenyl picolinate cleavage by mono-Schiff base complexes with aza-crown ether or morpholino pendants Jian-zhang Li*, Fa-mei Feng, Bin Xu,Wei-dong Jiang Key Laboratory of Green and Technology, Department of Chemistry, Sichuan University of Science & Engineering, Zigong, Sichuan, 643000, P.R. China Sheng-ying Qin Department of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P.R. China Mono-Schiff base manganese(III) and cobalt(II) complexes with either benzo-10-aza-crown ether pendants (MnL1 2Cl, CoL1 2) or morpholino pendants (MnL2 2Cl, CoL2 2) have been employed as models for hydrolase enzymes by studying the kinetics of their hydrolysis reactions with PNPP. A kinetic model of PNPP cleavage catalyzed by these complexes is proposed. Compared with the crown-free analogy MnL2 2Cl and CoL2 2, the crowned Schiff base complexes (MnL1 2Cl, CoL1 2) exhibit higher catalytic activity.   相似文献   

10.
Four macrocyclic Schiff-base cobalt complexes, [CoL1][NO3]2 · 3H2O, [CoL2][NO3]2 · 4H2O, [CoL3][NO3]2 · 4H2O and [CoL4][NO3]2 · 2H2O, were synthesized by reaction of salicylaldehyde derivatives with 1,4-bis(3-aminopropoxy)butane or (±)-trans-1,2-diaminocyclohexane and Co(NO3)2 · 6H2O by template effect in methanol. The metals to ligand ratio of the complexes were found to be 1:1. The Co(II) complexes are proposed to be tetrahedral geometry. The macrocyclic Co(II) complexes are 1:2 electrolytes as shown by their molar conductivities (ΛM) in DMF (dimethyl formamide) at 10?3 M. The structure of Co(II) complexes is proposed from elemental analysis, Ft-IR, UV–visible spectra, magnetic susceptibility, molar conductivity measurements and mass spectra. Electrochemical and thin-layer spectroelectrochemical studies of the complexes were comparatively studied in the same experimental conditions. The electrochemical results revealed that all complexes displayed irreversible one reduction processes and their cathodic peak potential values (E pc) were observed in around of ?1.14 to 0.95 V. It was also seen that [CoL1][NO3]2 · 3H2O and [CoL2][NO3]2 · 4H2O exhibited one cathodic wave without corresponding anodic wave but, [CoL3][NO3]2 · 4H2O and [CoL4][NO3]2 · 2H2O showed one cathodic wave with corresponding anodic wave, probably due to the presence of different ligand nature even if the complexes have the same N2O2 donor set. In view of spectroelectrochemical studies [CoL3][NO3]2 · 4H2O showed distinctive spectral changes in which the intensity of the band (λ = at 316 nm, assigned to n → π* transitions) decreased and a new broad band in a low intensity about 391 nm appeared as a result of the reduction process based on the cobalt center in the complex.  相似文献   

11.
The extraction of cobalt(II) from sulfate medium of ionic strength 0.33?mol dm?3 by capric acid dissolved in chloroform has been carried out at 25°C. By using the slope analysis method, the stoichiometry of the organometallic complex extracted was determined. Cobalt(II) complex exists as a mononuclear species CoL2.2HL in the lower concentration region of capric acid and a binuclear ones (CoL2.2HL)2 in the higher concentration region. Extraction constants for each species were given. UV–visible and FTIR spectroscopy have also been used for the investigation of the extractant and their complexes. Electronic spectrum of cobalt(II) caprate species indicates the octahedral structure.  相似文献   

12.
Li  Jian-zhang  Xie  Jia-qing  Zeng  Wei  Wei  Xiao-yao  Zhou  Bo  Zeng  Xian-cheng  Qin  Sheng-ying 《Transition Metal Chemistry》2004,29(5):488-494
Two CoII complexes with aza crown ether substituted salicylaldimine Schiff base, CoL1 2 and CoL2 2, have been synthesized and employed as models to mimic hydrolase in catalytic hydrolysis of a carboxylic ester. The specific change of u.v.–vis. absorption spectra of the hydrolytic reactive systems has been observed, which indicates that key intermediates are formed by PNPP and CoII complexes. The kinetics and the mechanism of PNPP hydrolysis have been investigated. The kinetic mathematical model for PNPP cleavage catalyzed by the CoII complexes has been proposed. The results show that, compared with the crown-free analogous CoL3 2, the bis(aza crown ether)s CoII complexes CoL1 2 and CoL2 2 exhibit high activity in the PNPP catalytic hydrolysis; the rate of the PNPP hydrolysis catalyzed by the complexes increases with the increase of pH of the buffer solution; the pseudo-first-order rate constants (k ob) of PNPP hydrolysis catalyzed by the complexes is 1000 times more than that of spontaneous hydrolysis of PNPP.  相似文献   

13.
The equilibrium constants and the thermodynamic parameters for the interaction of CoLx (L1 = 5-OMe-salabza, L2 = salabza, L3 = 5-Br-salabza and L4 = 5-NO2-salabza) as acceptors, with phosphines (PBu3, PPh2Me) as donors in dichloromethane were studied. This was performed by using UV-Vis spectrophotometry titration for 1:1 adduct formation of the selected complexes at various temperatures (T = 283–298 K). The trend of the adduct formation of the Co(II) complexes with a given phosphine donor decreases as CoL1 > CoL2 > CoL3 > CoL4. The stability of the resulting adducts with different Co(II)-schiff base complexes found to decrease in the order PBu3 > PPh2Me.  相似文献   

14.
Salen with two aza‐crown ether pendants H2L1 and its analogues H2L2‐H2L4 were successfully synthesized starting from benzo‐10‐aza‐15crown‐5 (BN15C5) or morpholine. Their structures were characterized by IR, MS, 1H NMR and elemental analysis, and were confirmed by X‐ray diffraction analysis of H2L1. Moreover, the saturated oxygen uptake of their cobalt(II) complexes CoL1‐CoL4 in diethyleneglycol dimethyl ether was determined at different temperature. The oxygenation contants (KO2 ) and thermodynamic parameters (ΔH° and ΔS°) were calculated. The modulation of O2‐binding capabilities by pendant substituents were investigated as compared with the parent Schiff base complex CoL5 (CoSalen). The results indicate that the dioxygen affinities of CoL have been much more enhanced by aza‐crown pendants than that by morpholino pendants, and the O2‐binding capabilities of CoL1 and CoL2 with aza‐crown pendants would also be enhanced by adding alkali metal cations.  相似文献   

15.

The polymer supported transition metal complexes of N,N′‐bis (o‐hydroxy acetophenone) hydrazine (HPHZ) Schiff base were prepared by immobilization of N,N′‐bis(4‐amino‐o‐hydroxyacetophenone)hydrazine (AHPHZ) Schiff base on chloromethylated polystyrene beads of a constant degree of crosslinking and then loading iron(III), cobalt(II) and nickel(II) ions in methanol. The complexation of polymer anchored HPHZ Schiff base with iron(III), cobalt(II) and nickel(II) ions was 83.30%, 84.20% and 87.80%, respectively, whereas with unsupported HPHZ Schiff base, the complexation of these metal ions was 80.3%, 79.90% and 85.63%. The unsupported and polymer supported metal complexes were characterized for their structures using I.R, UV and elemental analysis. The iron(III) complexes of HPHZ Schiff base were octahedral in geometry, whereas cobalt(II) and nickel(II) complexes showed square planar structures as supported by UV and magnetic measurements. The thermogravimetric analysis (TGA) of HPHZ Schiff base and its metal complexes was used to analyze the variation in thermal stability of HPHZ Schiff base on complexation with metal ions. The HPHZ Schiff base showed a weight loss of 58% at 500°C, but its iron(III), cobalt(II) and nickel(II) ions complexes have shown a weight loss of 30%, 52% and 45% at same temperature. The catalytic activity of metal complexes was tested by studying the oxidation of phenol and epoxidation of cyclohexene in presence of hydrogen peroxide as an oxidant. The supported HPHZ Schiff base complexes of iron(III) ions showed 64.0% conversion for phenol and 81.3% conversion for cyclohexene at a molar ratio of 1∶1∶1 of substrate to catalyst and hydrogen peroxide, but unsupported complexes of iron(III) ions showed 55.5% conversion for phenol and 66.4% conversion for cyclohexene at 1∶1∶1 molar ratio of substrate to catalyst and hydrogen peroxide. The product selectivity for catechol (CTL) and epoxy cyclohexane (ECH) was 90.5% and 96.5% with supported HPHZ Schiff base complexes of iron(III) ions, but was found to be low with cobalt(II) and nickel(II) ions complexes of Schiff base. The selectivity for catechol (CTL) and epoxy cyclohexane (ECH) was different with studied metal ions and varied with molar ratio of metal ions in the reaction mixture. The selectivity was constant on varying the molar ratio of hydrogen peroxide and substrate. The energy of activation for epoxidation of cyclohexene and phenol conversion in presence of polymer supported HPHZ Schiff base complexes of iron(III) ions was 8.9 kJ mol?1 and 22.8 kJ mol?1, respectively, but was high with Schiff base complexes of cobalt(II) and nickel(II) ions and with unsupported Schiff base complexes.  相似文献   

16.
The unsymmetrical bis‐Schiff base manganese(III) and cobalt(II) complexes with either benzo‐10‐aza‐crown ether pendants (MnL1Cl, MnL2Cl) or morpholino pendant (MnL3Cl, CoL3) have been employed as models for hydrolase by studying the kinetics of their hydrolysis reactions with p‐nitrophenyl picolinate (PNPP). A kinetic model of PNPP cleavage catalyzed by these complexes is proposed. The effects of complex structures and reaction temperature on the rate of PNPP hydrolysis have been examined. All four complexes exhibit high catalytic activity and the rate increases with pH under 25°C. The complexes of ligands containing a crown ether group exhibit higher catalytic activities than the non‐crown analogues. The catalytic activity of the complexes follows the order Mn(III)>Co(II) under the same ligands.  相似文献   

17.
Wei  Xingyao  Li  Jianzhang  Zhou  Bo  Qin  Shengying 《Transition Metal Chemistry》2004,29(4):457-462
CoII and MnIII complexes with aza-crown or morpholino substituted Salen and Salophen ligands were synthesized starting from benzo-10-aza-15-crown-5 or morpholine. The saturated oxygen uptake of the CoII complexes CoL1–CoL4 in MeOCH2CH2OMe solution was determined at different temperatures. The equilibrium constant (KO2) and thermodynamic parameters (H 0, S 0) for oxygenation were calculated. Meanwhile, the corresponding MnIII complexes, MnL1Cl–MnL4Cl, were employed as models of mimic mono-oxygenase to catalyze PhCH=CH2 epoxidation at ambient temperature and pressures. The modulation of O2-binding capabilities and catalytic oxidation performance by these pendant substituents in the complexes were investigated and compared with the parent complexes ML5(Msalen) and ML6(Msalophen). The results indicate that the dioxygen affinities and catalytic oxidation activities of these complexes have been much more enhanced by aza-crown pendants than by morpholino pendants. Moreover, the O2-binding capabilities of bis(aza-crown ether) CoII complexes, CoL1 and CoL2, would also be improved by adding alkali metal (Li+, Na+ and K+) cations to the system. Adding K+ shows the most significant enhancement of dioxygen affinity through its forming sandwich-type complexes with two aza-crown ethers of CoL1 and CoL2. Likewise, the bis(aza-crown ether) MnIII complexes, MnL1 and MnL2, exhibit the best catalytic activity: the conversions of PhCH=CH2 attain 76.6, 79.5% respectively.  相似文献   

18.
Summary CoL2X2 (X = Cl, Br or I) complexes were obtained by reacting cobalt(II) halides withN-methyl-,N-ethyl-,N,N-dimethyl- andN,N-diethyl-imidazolidine-2-selone. The same ligands with cobalt(II) tetrafluoroborate gave CoL4(BF4)2 complexes only with the disubstituted ligands. On the basis of i.r. and electronic spectra all the complexes are considered to be Se-bonded to the metal with a tetrahedral stereochemistry, as supported by magnetic measurements and colours. The ligand field parameters (Dq, B and ) for the [CoL4]2+ ion are evaluated by using the averaged ligand field approximation. The influence of the substituents on these parameters are discussed and compared with those obtained for the analogous complexes with the sulphur parent ligands.This work was partially supported by C.N.R. of Rome, Italy.  相似文献   

19.
《印度化学会志》2021,98(6):100080
Two octahedral complexes [NiL(HL)]ClO4.0.5CH3OH and [CoL2]ClO4 have been synthesized with N2O donor Schiff base ligand {((2-(phenylamino)ethyl)imino)methyl}phenol (HL) and characterized by spectroscopic techniques and single crystal X-ray diffraction studies. The molar conductivities data of the two complexes show that the complexes are 1:1 electrolyte. Single crystal X-ray diffraction data shows both Ni(II) and Co(III) complexes have distorted octahedral geometry and two ligands are coordinated to the metal centers and one ClO4 ion outside the coordination sphere. The intermolecular interactions in the complexes are evaluated by Hirshfeld surface analysis and revealed a significant contribution of non- or weakly polar interactions to the packing forces for both molecules, with crystal structure of Co(III) complex featuring short H/H contacts.  相似文献   

20.
The unsymmetrical bis-Schiff base manganese(III) and cobalt(II) complexes with either benzo-10-aza-crown ether pendants (MnL1Cl, MnL2Cl) or morpholino pendant (MnL3Cl, CoL3) have been employed as models for hydrolase by studying the kinetics of their hydrolysis reactions with p-nitrophenyl picolinate (PNPP) in the buffered CTAB micellar solution. A kinetic model of PNPP cleavage catalyzed by these complexes is proposed. The effects of complex structures and reaction temperature on the rate of PNPP hydrolysis have been examined. All four complexes exhibit higher catalytic activity in the buffered CTAB micellar solution and the rate increases with pH of the buffered CTAB micellar solution under 25°C. The complexes containing a crown ether group exhibit higher catalytic activities than the free-crown analogues. The catalytic activity of manganese(III) complex is superiority over cobalt(II) complex in catalyzing hydrolysis of PNPP under the same ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号