首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our aims of this paper are twofold: On one hand, we study the asymptotic stability in probability of stochastic differential system, when both the drift and diffusion terms are affine in the control. We derive sufficient conditions for the existence of control Lyapunov functions (CLFs) leading to the existence of stabilizing feedback laws which are smooth, except possibly at the equilibrium state. On the other hand, we consider the previous systems with an unknown constant parameters in the drift and introduce the concept of an adaptive CLF for stochastic system and use the stochastic version of Florchinger's control law to design an adaptive controller. In this framework, the problem of adaptive stabilization of nonlinear stochastic system is reduced to the problem of non-adaptive stabilization of a modified system.  相似文献   

2.
《随机分析与应用》2013,31(6):1255-1282
Abstract

The purpose of this paper is to give a systematic method for global asymptotic stabilization in probability of nonlinear control stochastic differential systems the unforced dynamics of which are Lyapunov stable in probability. The approach developed in this paper is based on the concept of passivity for nonaffine stochastic differential systems together with the theory of Lyapunov stability in probability for stochastic differential equations. In particular, we prove that, as in the case of affine in the control stochastic differential systems, a nonlinear stochastic differential system is asymptotically stabilizable in probability provided its unforced dynamics are Lyapunov stable in probability and some rank conditions involving the affine part of the system coefficients are satisfied. Furthermore, for such systems, we show how a stabilizing smooth state feedback law can be designed explicitly. As an application of our analysis, we construct a dynamic state feedback compensator for a class of nonaffine stochastic differential systems.  相似文献   

3.
The stochastic Artstein's theorem is applied to derive sufficient conditions for dynamic asymptotic stabilization in probability by means of a feedback integrator for a class of nonlinear stochastic differential systems. A stabilizing feedback law is deduced from a control Lyapunov function  相似文献   

4.
An adaptive neural dynamic surface control (DSC) problem with fixed-time prescribed performance (FTPP) is investigated for a class of nonstrict-feedback stochastic switched systems. Differently from the existing works for FTPP problem, the stochastic switched systems with nonstrict-feedback form and completely unknown systems are considered in this paper, and the unknown functions are approximated by some radial basis function (RBF) neural networks (NNs). The desired adaptive neural controller is designed by using common Lyapunov function method and defining fixed-time prescribed performance function (PPF). And based on the adaptive DSC scheme with the nonlinear filter, the “explosion of complexity” problem is avoided. Besides, the constructed fixed-time PPF just need to meet the requirement of second derivative exists. According to the Lyapunov stability theory, the FTPP of output tracking error is achieved, and all signals of closed-loop system remain bounded in probability. Finally, simulation results are presented to verify the availability of the designed control strategy.  相似文献   

5.
This paper addresses an adaptive output-feedback tracking problem of arbitrarily switched pure-feedback nonlinear systems with time-varying output constraints and unknown control directions. In this work, the tracking problem of switched non-affine nonlinear systems with output constraints is transformed into the stabilization problem of switched unconstrained affine systems. The main contribution of this paper is to present a universal formula for constructing an adaptive state-observer-based tracking controller with only two adaptive parameters by using the common Lyapunov function method. These adaptive parameters in the proposed control scheme are derived using the function approximation technique and a priori knowledge of the signs of control gain functions is not required. The theoretical analysis is presented for the Lyapunov stability and the constraint satisfaction of the resulting closed-loop system in the presence of arbitrary switchings.  相似文献   

6.
This paper extends the notion of generalized joint spectral radius with exponents, originally defined for a finite set of matrices, to probability distributions. We show that, under a certain invariance condition, the radius is calculated as the spectral radius of a matrix that can be easily computed, extending the classical counterpart. Using this result we investigate the mean stability of switching systems. In particular we establish the equivalence of mean square stability, simultaneous contractibility in square mean, and the existence of a quadratic Lyapunov function. Also the stabilization of positive switching systems is studied. Numerical examples are given to illustrate the results.  相似文献   

7.
针对一类以有限齐次马氏链δ(k)作为切换信号的随机混合系统,首先,通过构造随机混合Lyapunov函数,得到整个随机混合系统渐近稳定的充分条件.然后,引入可调转移概率等相关概念,通过对有限齐次马氏链δ(k)及各子系统加入控制,以实现状态反馈控制.进一步,得到随机混合闭环系统渐近稳定的充分条件.  相似文献   

8.
We extend the well-known Artstein-Sontag theorem by introducing the concept of control Lyapunov function for the notion of nonuniform in time global asymptotic stability in probability of stochastic differential system, when both the drift and diffusion terms are affine in the control. The main results of our work enable us to derive the necessary and sufficient conditions for feedback stabilization for affine in the control systems.  相似文献   

9.
一类非线性系统的自适应反步控制   总被引:2,自引:0,他引:2  
研究一类带有未知常数参量的非线性系统的镇定及自适应控制器设计问题,提出了一类非线性系统参数估计器设计及自适应反步控制器设计的新方法.构造出Lyapunov函数, 并给出闭环系统全局渐近稳定的新的充分条件.例子表明了所获方法的有效性.  相似文献   

10.
讨论随机系统的有限时间镇定问题.首先提出了随机系统有限时间稳定的概念;其次证明了随机系统有限时间稳定的Lyapunov定理;然后,讨论了一类随机系统的镇定问题.  相似文献   

11.
This paper addresses the problem of adaptive stabilization of uncertain unified chaotic systems with nonlinear input in the sector form. A novel representation of nonlinear input function, that is, a linear input with bounded time-varying coefficient, is firstly established. Then, an adaptive control scheme is proposed based on the new nonlinear input model. By using Barbalat’s lemma, the asymptotic stability of the closed-loop system is proved in spite of system uncertainties, external disturbance and input nonlinearity. One of the advantages of the proposed design method is that the prior knowledge on the plant parameter, the bound parameters of the uncertainties and the slope parameters inside the sector nonlinearity is not required. Finally, numerical simulations are performed to verify the analytical results.  相似文献   

12.
In this paper, the boundary stabilization for a Kirchhoff-type nonlinear beam with one end fixed and control at the other end is considered. A gain adaptive controller is designed in terms of measured end velocity. The existence and uniqueness of the classical solution of the closed-loop system are justified. The exponential stability of the system is obtained.  相似文献   

13.
一类二维Markov跳跃非线性时滞系统的镇定控制   总被引:1,自引:0,他引:1  
研究一类二维Markov跳跃非线性时滞系统的镇定控制问题.给出了Markov跳跃非线性时滞系统解的存在唯一性的一个充分条件,以及系统依概率全局渐近稳定的判别准则.通过构造适当形式的Lyapunov函数,采用积分反推方法给出了一类二维Markov跳跃非线性时滞系统的无记忆状态反馈控制器.证明了在该控制律的作用下,闭环系统平衡点依概率全局渐近稳定.  相似文献   

14.
We introduce the concept of “stabilization by rotation” for deterministic linear systems with negative trace. This concept encompasses the well-known concept of “vibrational stabilization” introduced by Meerkov in the 1970s and is a deterministic version of ‘stabilization by noise’ for stochastic systems as introduced by Arnold and coworkers in the 1980s. It is shown that a linear system with negative trace can be stabilized by adding a skew-symmetric matrix, multiplied by a suitable scalar so-called “gain function” (possibly a constant) which is sufficiently large. To overcome the problem of what is “sufficiently large”, we also present a servo mechanism which tunes the gain function by learning from the trajectory until finally the trajectory tends to zero. This approach allows to show that one of Meerkov's assumptions for vibrational stabilization is superfluous. Moreover, while Meerkov as well as Arnold and coworkers assume that a stabilizing periodic function or the noise has sufficiently large frequency and amplitude, we also provide a servo mechanism to determine this function dynamically in a deterministic setup.  相似文献   

15.
We obtain new sufficient conditions for the local and global asymptotic stabilization of the zero solution of a nonlinear affine control system with discrete time and with constant coefficients by a continuous state feedback. We assume that the zero solution of the free system is Lyapunov stable. For systems with linear drift, we construct a bounded control in the problem of global asymptotic state and output stabilization. Corollaries for bilinear systems are obtained.  相似文献   

16.
The main purpose of this paper is to fill a gap in the literature concerning the problem of designing a sampled-data control law for continuous-time Lur’e systems. The goal is to design a state feedback sampled-data control for this class of nonlinear systems preserving global asymptotic stability and minimizing a guaranteed quadratic cost. The main challenge towards the solution of the proposed problem is to handle this class of nonlinear system in order to propose less conservative design conditions expressed through differential linear matrix inequalities - (DLMIs). Bellman’s Principle of Optimality applied together with the Popov–Lyapunov function that emerges from the celebrated Popov Stability Criterion is the key issue to obtain the reported results. Two examples are solved for illustration.  相似文献   

17.
We consider affine control systems with the finite L2-gain property in the case the storage function is nondifferentiable. We generalize some classical results concerning the connection of the finite L2-gain property with the stability properties of the unforced system, the characterization of finite L2-gain by means of partial differential inequalities of the Hamilton-Jacobi type and the problem of giving to a system the finite L2-gain property by means of a feedback law. Moreover, we introduce and study the apparently new notion of exact storage function.  相似文献   

18.
This article is concerned with the modified projective synchronization problem for a class of four-dimensional chaotic system with uncertain parameters. By utilizing Lyapunov method, an adaptive control scheme for the synchronization has been presented. The control performances are verified by a numerical simulation.  相似文献   

19.
In this paper, we studied the stabilization of nonlinear regularized Prabhakar fractional dynamical systems without and with time delay. We establish a Lyapunov stabiliy theorem for these systems and study the asymptotic stability of these systems without design a positive definite function V (without considering the fractional derivative of function V is negative). We design a linear feedback controller to control and stabilize the nonautonomous and autonomous chaotic regularized Prabhakar fractional dynamical systems without and with time delay. By means of the Lyapunov stability, we obtain the control parameters for these type of systems. We further present a numerical method to solve and analyze regularized Prabhakar fractional systems. Furthermore, by employing numerical simulation, we reveal chaotic attractors and asymptotic stability behaviors for four systems to illustrate the presented theorem.  相似文献   

20.
The purpose of this note, is to derive sufficient conditions for the existence of stabilizing feedback laws for control stochastic bilinear systems and to apply these results to the stabilization of a class of nonlinear stochastic differential systems. The method used in this paper rely on the stochastic Lyapunov machinery  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号