首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preparation of novel Rh (I) and Ir (I) complexes, i.e. [Rh(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD)]+[PF6] (1), Rh(CF3SO3)(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (2) and Ir(CF3CO2)(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (3) (COD = 1,5-cyclooctadiene), is described. Compounds 1 and 3 were structurally characterized by X-ray diffraction. In 1, the N-heterocyclic carbene acts as a bidentate ligand with the carbene coordinating to the Rh(I) center and an arene group acting as a homoazallyl ligand. The catalytic activity of complexes 13 in the polymerization of phenylacetylene was studied and compared to that of RhCl(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (4), Rh(CF3COO)(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (5), [Rh(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD)]+[BF4] (6), IrCl(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (7), IrCl(1,3-diisopropyl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (8), IrBr(1,3-di-2-propylimidazolin-2-ylidene)(COD) (9), RuCl2(PCy3)(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(CH–C6H5) (10), RuCl2(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(CH-2-(2-PrO)-5-NO2-C6H3) (11), Ru(CO2CF3)2(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(CH-2-(2-PrO)-5-NO2-C6H3) (12). Compounds 16 were active in the polymerization of phenylacetylene. cis-Poly(phenylacetylene) (PPA) was obtained with the rhodium-based catalysts 1, 2, 46, trans-PPA was obtained with the Ir-based catalysts 3 and 8. In addition, compounds 1 and 6 were found to produce highly stereoregular PPA with a cis-content of 100% in the presence of water. Finally, the Ru-based metathesis initiator 12 allowed for the synthesis of trans-PPA, representing the first example of a ruthenium complex being active in the polymerization of a terminal alkyne.  相似文献   

2.
The synthesis of novel copper (I) N-heterocyclic carbene complexes is described. Thus, reaction of CuX with 1,3-di(2-propyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene yields CuX(1,3-di(2-propyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene) (X=Cl, (1a), Br (1b)); however, reaction of CuCl with 1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene yields the bis-N-heterocylcic carbene complex Cu(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)2+CuBr2 (2). A supported version of 1, i.e. PS-DVB-CH2-OCO-CF2-CF2-CF2-COOCu(1,3-di(2-propyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene) (3) was prepared from 1 and PS-DVB-CH2-OCO-CF2-CF2-CF2-COOAg. A copper loading of 4.15 μmol/g was realized. The new compounds were used as catalysts in carbonyl hydrosilylation and cyanosilylation reactions. Excellent reactivity was observed, giving raise to turn-over numbers (TONs) of up to 100,000. Compounds 1a, 1b, and 2 have also been used as catalysts for the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA). A linear conversion of monomer with time was observed, however, no control over molecular weight of PMMA was observed.  相似文献   

3.
Six new rhodium-tetrahydropyrimidin-2-ylidene complexes (2af) have been prepared and characterized by C, H, N analysis, 1H NMR and 13C NMR. Phenylboronic acid reacts with aldehydes in the presence of a catalytic amount of the new rhodium(I)-carbene complexes, RhCl(COD)(1,3-dialkyl-3,4,5,6-tetrahydropyrimidin-2-ylidene), (2af), to give the corresponding secondary aryl alcohols in good yields (72–96%).  相似文献   

4.
Ji Y  Zhang R  Li YJ  Li YZ  Zuo JL  You XZ 《Inorganic chemistry》2007,46(3):866-873
A series of new platinum(II) complexes containing both 4,4'-di-tert-butyl-2,2'-bipyridine (dbbpy) and the extended tetrathiafulvalenedithiolate ligands have been prepared and characterized. These complexes include [Pt(dbbpy)(C8H4S8)] (1; C8H4S82- = 2-{(4,5-ethylenedithio)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate), [Pt(dbbpy)(ptdt)] (2; ptdt = 2-{(4,5-cyclopentodithio)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate), [Pt(dbbpy)(mtdt)] (3; mtdt = 2-{(4,5-methylethylenedithio)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate), [Pt(dbbpy)(btdt)] (4; btdt = benzotetrathiafulvalenedithiolate), [Pt(dbbpy)(C8H6S8)] (5; C8H6S82- = 2-{4,5-bis(methylthio)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate), [Pt(dbbpy)(3O-C6S8)] (6; 3O-C6S82- = 2-{4,5-dithia-(3',6',9'-trioxaundecyl)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate), and [Pt(dbbpy)(4O-C6S8)] (7; 4O-C6S82- = 2-{4,5-dithia-(3',6',9',12'-tetraoxatetradecyl)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate). The crystal structures of a new ligand precursor (2-[4,5-dithia-(3',6',9',12'-tetraoxatetradecyl)-1,3-dithiol-2-ylidene]-4,5-bis(2-cyanoethylsulfanyl)-1,3-dithiole, IIIc) and complexes 5-7 have been determined by X-ray crystallography. Complexes 1-7 show intense electronic absorption bands in the UV-vis region due to the intramolecular mixed metal/ligand-to-ligand charge-transfer transition, and they display significant solvatochromic behavior. Redox properties of these compounds have been investigated by cyclic voltammetry, and complex 7 shows a significant response for Na+ ions with a large positive shift of ca. 45 mV.  相似文献   

5.
The ambient temperature reaction of the N-heterocyclic carbenes (NHCs) 1,3-dimesitylimidazol-2-ylidene (IMes) and 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IDipp) with the triruthenium cluster [Ru(3)(CO)(12)], in a 3 : 1 stoichiometric ratio, results in homolytic cleavage of the cluster to quantitatively afford the complexes [Ru(CO)(4)(NHC)] (; NHC = IMes, ; NHC = IDipp). Reaction of the 2-thione or hydrochloride precursors to IMes, i.e. S[double bond, length as m-dash]IMes and IMes.HCl, with the same triruthenium cluster affords the complexes [Ru(4)(mu(4)-S)(2)(CO)(9)(IMes)(2)] () and [Ru(4)(mu(4)-S)(CO)(10)(IMes)(2)] () (3 : 1 and 2 : 1 reaction), and [{Ru(mu-Cl)(CO)(2)(IMes)}(2)] () (3 : 1 reaction) respectively. By contrast, the complex [Ru(3)(mu(3)-S)(2)(CO)(7)(IMeMe)(2)] (), where IMeMe is 1,3,4,5-tetramethylimidazol-2-ylidene, is the sole product of the 2 : 1 stoichiometric reaction of S[double bond, length as m-dash]IMeMe with [Ru(3)(CO)(12)]. Compounds -, and have been structurally characterised by single crystal X-ray diffraction.  相似文献   

6.
Thermolysis of [Ru(AsPh3)3(CO)H2] with the N-aryl heterocyclic carbenes (NHCs) IMes (1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene), IPr (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) or the adduct SIPr.(C6F5)H (SIPr=1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene), followed by addition of CH2Cl2, affords the coordinatively unsaturated ruthenium hydride chloride complexes [Ru(NHC)2(CO)HCl] (NHC=IMes , IPr , SIPr ). These react with CO at room temperature to yield the corresponding 18-electron dicarbonyl complexes . Reduction of and [Ru(IMes)(PPh3)(CO)HCl] () with NaBH4 yields the isolable borohydride complexes [Ru(NHC)(L)(CO)H(eta2-BH4)] (, L=NHC, PPh3). Both the bis-IMes complex and the IMes-PPh3 species react with CO at low temperature to give the eta1-borohydride species [Ru(IMes)(L)(CO)2H(eta1-BH4)] (L=IMes , PPh3), which can be spectroscopically characterised. Upon warming to room temperature, further reaction with CO takes place to afford initially [Ru(IMes)(L)(CO)2H2] (L=IMes, L=PPh3) and, ultimately, [Ru(IMes)(L)(CO)3] (L=IMes , L=PPh3). Both and lose BH3 on addition of PMe2Ph to give [Ru(IMes)(L)(L')(CO)H2](L=L'=PMe2Ph; L=PPh3, L'=PMe2Ph). Compounds and have been tested as catalysts for the hydrogenation of aromatic ketones in the presence of (i)PrOH and H2. For the reduction of acetophenone, catalytic activity varies with the NHC present, decreasing in the order IPr>IMes>SIMes.  相似文献   

7.
Two novel anellated N-heterocyclic carbenes (NHC), 1,3-dineopentylnaphtho[2,3-d]imidazol-2-ylidene, and 1,3-dineopentyl-2-ylido-imidazolo[4,5-b]pyridine were obtained by reduction of the respective thiones with potassium, the former also by deprotonation of the corresponding naphthimidazolium hexafluorophosphate by using excess KH in THF. The use of equimolar amounts of KH provided an unexpected formal addition product of this NHC with KOH. X-ray crystal structure analysis of the adduct provided evidence for a distorted tetrameric N-heterocyclic alkoxide, stabilized by two THF molecules. In C(6)D(6) the compound undergoes disproportionation. Transition-metal complexes [(NHC)AgCl], [(NHC)Rh(cod)Cl], and (E)-[(NHC)(2)PdCl(2)] of the novel naphthimidazol-2-ylidene were synthesized. X-ray crystal structures and (1)H and (13)C NMR spectroscopic data provided detailed structural information. Comparing characteristic data with those of nonanellated and differently anellated NHCs or their complexes provides information on the influence of the extended anellation.  相似文献   

8.
Reaction of aminophosphinimine [RHN(CH(2))(2)N[double bond, length as m-dash]PPh(3)] (R = H, Et) with Re(2)(CO)(10) provided the NH-functionalized carbene rhenium complex [Re(2)(CNHCH(2)CH(2)NR)(CO)(9)] (3a, R = H, 3b, R = Et). Treatment of 3 with Br(2) provided the mono nuclear [Re(CNHCH(2)CH(2)NR)(CO)(4)Br] (1, R = H, 2, R = Et). However, NH-functionalized carbene complexes 1-3 did not undergo N-alkylation with alkyl halides to yield the N-substituted NHC complexes. The direct ligand substitution of [Re(CO)(5)Br] with a carbene donor was employed to prepare [Re(IMes(2))(CO)(4)Br] (6a, IMes(2) = 1,3-di-mesitylimidazol-2-ylidene; 6b, IMes(2) = 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene). Analyses of spectroscopic and crystal data of 6a and 6b show similar corresponding data among these complexes, suggesting the saturated and unsaturated NHCs have similar bonding with Re(I) metal centers. Reduction of 6a and 6b with LiEt(3)BH yielded the corresponding hydrido complexes 7a-b [ReH(CO)(4)(IMes(2))], but not 1 and 2. Ligand substitution of 1, 6a and 6b toward 2,2'-bipyridine (bipy) was investigated. Crystal structures of 1, 3a-b, 6a-b and 7b were determined for characterization and comparison.  相似文献   

9.
The synthesis of novel Rh(1,3-bis(2,4,6-trimethylphenyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) tetrafluoroborate (1, COD = η4-1,5-cyclooctadiene) is described. The N-heterocyclic carbene acts as a bidentate ligand with the carbene coordinating to the Rh(I) center and an arene group acting as a homoazallyl ligand. 1 was used in various carbonyl arylation and hydrosilylation reactions allowing the formation of the desired products with unprecedented selectivity and efficiency. Thus, turn-over numbers (TONs) up to 2000 were achieved.  相似文献   

10.
The synthesis of novel ruthenium-based metathesis catalysts containing the saturated 1,3-bis(2,4,6-trimethylphenyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene ligand, that is, [RuCl2(NHC)[=CH-2-(2-PrO)-5-NO(2)-C6H3]] (1) and [Ru(CF3COO)2(NHC)[=CH-2-(2-PrO)-5-NO2-C6H3]] (2) (NHC=1,3-bis(2,4,6-trimethylphenyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene) is described. Both catalysts are highly active in ring-closing metathesis (RCM) and ring-opening cross-metathesis (ROCM). Compound 1 shows moderate activity in enyne metathesis. Compound 2 is not applicable to enyne metathesis since it shows high activity in the cyclopolymerization of diethyl dipropargylmalonate (DEDPM). Poly(DEDPM) prepared by the action of 2 consists of 95% five-membered rings, that is, poly(cyclopent-1-enevinylene)s, and 5 % of six-membered rings, that is, poly(cyclohex-1-ene-3-methylidene)s. The polymerization proceeds in a nonliving manner and results in polyenes with broad polydispersities (1.9< or =PDI< or =2.3). Supported analogues of 2 were prepared by immobilization on hydroxymethyl-Merrifield resin and a monolithic support derived from ring-opening-metathesis polymerization (ROMP). Catalyst loadings of 1 and 2.5%, respectively, were obtained. Both supported versions of 2 showed excellent reactivity. With 0.24-2% of the supported catalysts, yields in RCM and ROCM were in the range of 76-100%. Leaching of ruthenium was low and resulted in Ru contaminations of the products of less than 0.000014% (0.14 ppm).  相似文献   

11.
Reaction of [RhCl(COD)]2, with 1,3-dialkylimidazolinylidene (1) or 1,3-dialkylbenzimidazolinylidene (2) resulted in the formation of rhodium(I) 1,3-dialkylimidazolin-2-ylidene (3a-c) and 1,3-dialkylbenzimidazolin-2-ylidene (4a,b) complexes. Triethylsilane reacts with acetophenone derivatives in the presence of catalytic amounts of RhCl(COD)(1,3-dialkylimidazolin-2-ylidene) or RhCl(COD)(1,3-dialkylbenzimidazolin-2-ylidene) to give the corresponding silylethers in good yield (57–98%).  相似文献   

12.
以取代苄氯(1a~1c)为起始原料,与咪唑经氮烷基化反应制得苄基咪唑氯盐(2a~2c); 2a~2c与氧化银经原位去质子化反应合成了3种新型的氮杂环卡宾银配合物--(NHC)AgCl[NHC: 1,3-二(4-甲氧基苄基)咪唑-2-亚基(3a), 1,3-二(3-甲氧基苄基)咪唑-2-亚基(3b)]和[(NHC)AgCl]2[NHC=1,3-二(4-氯苄基)咪唑-2-亚基(3c)],其结构经1H NMR, 13C NMR, IR,元素分析和X-射线单晶衍射表征。3a~3c单晶结构均属单斜晶系,3a为P21/n空间群,3b和3c为P21/c空间群,3a和3b为单核银配合物,3c为双核银配合物。  相似文献   

13.
Monomeric copper(I) alkyl complexes that possess the N-heterocyclic carbene (NHC) ligands IPr, SIPr, and IMes [IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene, SIPr = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene, IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene] react with amines or alcohols to release alkane and form the corresponding monomeric copper(I) amido, alkoxide, or aryloxide complexes. Thermal decomposition reactions of (NHC)Cu(I) methyl complexes at temperatures between 100 and 130 degrees C produce methane, ethane, and ethylene. The reactions of (NHC)Cu(NHPh) complexes with bromoethane reveal increasing nucleophilic reactivity at the anilido ligand in the order (SIPr)Cu(NHPh) < (IPr)Cu(NHPh) < (IMes)Cu(NHPh) < (dtbpe)Cu(NHPh) [dtbpe = 1,2-bis(di-tert-butylphosphino)ethane]. DFT calculations suggest that the HOMO for the series of Cu anilido complexes is localized primarily on the amido nitrogen with some ppi(anilido)-dpi(Cu) pi-character. [(IPr)Cu(mu-H)]2 and (IPr)Cu(Ph) react with aniline to quantitatively produce (IPr)Cu(NHPh)/dihydrogen and (IPr)Cu(NHPh)/benzene, respectively. Analysis of the DFT calculations reveals that the conversion of [(IPr)Cu(mu-H)]2 and aniline to (IPr)Cu(NHPh) and dihydrogen is favorable with DeltaH approximately -7 kcal/mol and DeltaG approximately -9 kcal/mol.  相似文献   

14.
The synthesis of 1,3-diarylimidazolidin-2-ylidene (NHC) precursor, 1,3-bis(2,4,6-trimethylphenyl)imidazolinium chloride, (3b) has been extended to the electronically and sterically modified NHC precursors 3a (X = H), 3c (X = Br) and 3e (X = Cl) in order to investigate the electronic effect of a p-substituent (X) on cross-coupling catalysts. Complexes of the type PdCl2(NHC)2 (5), PdCl2(NHC)(PPh3) (6) and [RhCl(NHC)(cod)] (7) were prepared from 3 or 4d (1,3-bis(2,4-dimethylphenyl)-2-trichloromethylimidazolidin). Initial decomposition temperatures of the complexes 5 and 6 were determined by TGA. In situ formed complexes from Pd(OAc)2 and 3 as well as the preformed complexes 5 and 6 have been tested as catalysts in coupling of phenylboronic acid with 4-haloacetophenones. The electron donating ability of NHCs derived from 3 was assessed by measuring C-O frequencies in the respective [RhCl(NHC)(CO)2] complex 8 which was prepared by replacement of cod ligand of 7 with CO. An interesting correlation between the electron-donating nature of the aryl substituent and catalytic activity and also initial decomposition temperature of the complexes 5 and 6 was observed.  相似文献   

15.
The reaction of gem-dithiol compounds R 2C(SH) 2 (R = Bn (benzyl), (i) Pr; R 2 = -(CH 2) 4-) with dinuclear rhodium or iridium complexes containing basic ligands such as [M(mu-OH)(cod)] 2 and [M(mu-OMe)(cod)] 2, or the mononuclear [M(acac)(cod)] (M = Rh, Ir, cod = 1,5-cyclooctadiene) in the presence of a external base, afforded the dinuclear complexes [M 2(mu-S 2CR 2)(cod) 2] ( 1- 4). The monodeprotonation of 1,1-dimercaptocyclopentane gave the mononuclear complex [Rh(HS 2Cptn)(cod)] ( 5) that is a precursor for the dinuclear compound [Rh 2(mu-S 2Cptn)(cod) 2] ( 6). Carbonylation of the diolefin compounds gave the complexes [Rh 2(mu-S 2CR 2)(CO) 4] ( 7- 9), which reacted with P-donor ligands to stereoselectively produce the trans isomer of the disubstituted complexes [Rh 2(mu-S 2CR 2)(CO) 2(PR' 3) 2] (R' = Ph, Cy (cyclohexyl)) ( 10- 13) and [Rh 2(mu-S 2CBn 2)(CO) 2{P(OR') 3} 2] (R' = Me, Ph) ( 14- 15). The substitution process in [Rh 2(mu-S 2CBn 2)(CO) 4] ( 7) by P(OMe) 3 has been studied by spectroscopic means and the full series of substituted complexes [Rh 2(mu-S 2CBn 2)(CO) 4- n {P(OR) 3} n ] ( n = 1, 4) has been identified in solution. The cis complex [Rh 2(mu-S 2CBn 2)(CO) 2(mu-dppb)] ( 16) was obtained by reaction of 7 with the diphosphine dppb (1,4-bis(diphenylphosphino)butane). The molecular structures of the diolefinic dinuclear complexes [Rh 2(mu-S 2CR 2)(cod) 2] (R = Bn ( 1), (i) Pr ( 2); R 2 = -(CH 2) 4- ( 6)) and that of the cis complex 16 have been studied by X-ray diffraction.  相似文献   

16.
Reactions of two new tripodal ligands 1,3,5-tris(1-imidazolyl)benzene (4) and 1,3-bis(1-imidazolyl)-5-(imidazol-1-ylmethyl)benzene (5) with metal [Ag(I), Cu(II), Zn(II), Ni(II)] salts lead to the formation of novel two-dimensional (2D) metal-organic frameworks [Ag(2)(4)(2)][p-C(6)H(4)(COO)(2)].H(2)O (6), [Ag(4)]ClO(4) (7), [Cu(4)(2)(H(2)O)(2)](CH(3)COO)(2).2H(2)O (8), [Zn(4)(2)(H(2)O)(2)](NO(3))(2) (9), [Ni(4)(2)(N(3))(2)].2H(2)O (10), and [Ag(5)]ClO(4) (11). All the structures were established by single-crystal X-ray diffraction analysis. Crystal data for 6: monoclinic, C2/c, a = 23.766(3) A, b = 12.0475(10) A, c = 13.5160(13) A, beta = 117.827(3) degrees, Z = 4. For compound 7: orthorhombic, P2(1)2(1)2(1), a = 7.2495(4) A, b = 12.0763(7) A, c = 19.2196(13) A, Z = 4. For compound 8: monoclinic, P2(1)/n, a = 8.2969(5) A, b = 12.2834(5) A, c = 17.4667(12) A, beta = 96.5740(10) degrees, Z = 2. For compound 9: monoclinic, P2(1)/n, a =10.5699(3) A, b = 11.5037(3) A, c = 13.5194(4) A, beta = 110.2779(10) degrees, Z = 2. For compound 10: monoclinic, P2(1)/n, a = 9.8033(3) A, b = 12.1369(5) A, c = 13.5215(5) A, beta = 107.3280(10) degrees, Z = 2. For compound 11: monoclinic C2/c, a = 18.947(2) A, b = 9.7593(10) A, c = 19.761(2) A, beta = 97.967(2) degrees, Z = 8. Both complexes 6 and 7 are noninterpenetrating frameworks based on the (6, 3) nets, and 8, 9 and 10 are based on the (4, 4) nets while complex 11 has a twofold parallel interpenetrated network with 4.8(2) topology. It is interesting that, in complexes 6,7, and 11 with three-coordinated planar silver(I) atoms, each ligand 4 or 5 connects three metal atoms, while in the case of complexes 8, 9, and 10 with six-coordinated octahedral metal atoms, each ligand 4 only links two metal atoms, and another imidazole nitrogen atom of 4 did not participate in the coordination with the metal atoms in these complexes. The results show that the nature of organic ligand and geometric needs of metal atoms have great influence on the structure of metal-organic frameworks.  相似文献   

17.
The heteroscorpionate ligands [HB(taz)(2)(pz(R))](-) (pz(R) = pz, pz(Me2), pz(Ph)) and [HB(taz)(pz)(2)](-), synthesised from the appropriate potassium hydrotris(pyrazolyl)borate salt and 4-ethyl-3-methyl-5-thioxo-1,2,4-triazole (Htaz), react with [{Rh(cod)(μ-Cl)}(2)] to give [Rh(cod)Tx] {Tx = HB(taz)(2)(pz), HB(taz)(2)(pz(Me2)), HB(taz)(2)(pz(Ph)), HB(taz)(pz)(2)}; the heteroscorpionate rhodaboratrane [Rh{B(taz)(2)(pz(Me2))}{HB(taz)(2)(pz(Me2))}] is the only isolable product from the reaction of [{Rh(nbd)(μ-Cl)}(2)] with K[HB(taz)(2)(pz(Me2))]. Carbonylation of the cod complexes gave a mixture of [Rh(CO)(2)Tx] and [(RhTx)(2)(μ-CO)(3)] which reacts with PR(3) to give [Rh(CO)(PR(3))Tx] (R = Cy, NMe(2), Ph, OPh). In the solid state the complexes are square planar with the particular structure dependent on the steric and/or electronic properties of the scorpionate and ancillary ligands. The complex [Rh(cod){HB(taz)(pz)(2)}] has the heteroscorpionate κ(2)[N(2)]-coordinated to rhodium with the B-H bond directed away from the rhodium square plane while [Rh(cod){HB(taz)(2)(pz(Me2))}] is κ(2)[SN]-coordinated, with the B-H bond directed towards the metal. The complexes [Rh(CO)(PPh(3)){HB(taz)(2)(pz)}] and [Rh(CO)(PPh(3)){HB(taz)(2)(pz(Me2))}] are also κ(2)[SN]-coordinated but with the pyrazolyl ring cis to PPh(3); in the former the B-H bond is directed towards rhodium while in the latter the ring is pseudo-parallel to the rhodium square plane, as also found for [Rh(CO)(2){HB(taz)(2)(pz(Me2))}]. The analogues [Rh(CO)(PR(3)){HB(taz)(2)(pz(Me2))}] (R = Cy, NMe(2)) have the phosphines trans to the pyrazolyl ring. Uniquely, [Rh(CO)(PPh(3)){HB(taz)(2)(pz(Ph))}] is κ(2)[S(2)]-coordinated. A qualitative mechanism is given for the rapid ring-exchange, and hence isomerisation, observed in solution.  相似文献   

18.
The first bi- and mononuclear rhodium(I) complexes [{Rh(μ-OSi(8)O(12)(i-Bu)(7))(cod)}(2)] (5), [Rh(cod)(PCy(3))(OSi(8)O(12)(i-Bu)(7))] (6) with a hindered hepta(iso-butyl)silsesquioxyl ligand bonded to the rhodium(I) center through Rh-O-Si bonds have been synthesized and their structures have been solved by spectroscopic methods and X-ray analysis. Their exemplary catalytic properties in silylative coupling of vinylsilanes with styrene are also presented.  相似文献   

19.
The NHC-stabilized complex [Ni2(iPr2Im)4(cod)] (1) was isolated in good yield from the reaction of [Ni(cod)2] with 1,3-diisopropylimidazole-2-ylidene (iPr2Im). Compound 1 is a source of the [Ni(iPr2Im)2] complex fragment in stoichiometric and catalytic transformations. The reactions of 1 with ethylene and CO under atmospheric pressure or with equimolar amounts of diphenylacetylene lead to the compounds [Ni(iPr2Im)2(eta2-C2H4)] (2), [Ni(iPr2Im)2(eta2-C2Ph2)] (3), and [Ni(iPr2Im)2(CO)2] (4) in good yields. In all cases the [Ni(iPr2Im)2] complex fragment is readily transferred without decomposition or fragmentation. In the infrared spectrum of carbonyl complex 4, the CO stretching frequencies are observed at 1847 and 1921 cm(-1), and are significantly shifted to lower wavenumbers compared with other nickel(0) carbonyl complexes of the type [NiL2(CO)2]. Complex 1 activates the C--F bond of hexafluorobenzene very efficiently to give [Ni(iPr2Im)2(F)(C6F5)] (5). Furthermore, [Ni2(iPr2Im)4(cod)] (1) is also an excellent catalyst for the catalytic insertion of diphenylacetylene into the 2,2' bond of biphenylene. The reaction of 1 with equimolar amounts of biphenylene at low temperature leads to [Ni(iPr2Im)2(2,2'-biphenyl)] (6), which is formed by insertion into the strained 2,2' bond. The reaction of diphenylacetylene and biphenylene at 80 degrees C in the presence of 2 mol % of 1 as catalyst yields diphenylphenanthrene quantitatively and is complete within 30 minutes.  相似文献   

20.
[K(2)(P(4)Mes(4))] (1) or [Na(2)(THF)(4)(P(4)Mes(4))] (2) (Mes = 2,4,6-Me(3)C(6)H(2)) reacts with one equivalent of HCl and subsequently with 0.5 equivalents of [{RhCl(cod)}(2)] (cod = 1,5-cyclooctadiene) to give a mixture of rhodium complexes, from which [Rh(P(4)HMes(4))(cod)] (3) and the secondary product [Rh(2)(micro-P(2)HMes(2))(mu-PHMes)(cod)(2)] (4) were isolated and characterised by X-ray diffraction studies. Alternatively, the reaction of [K(2)(P(4)Ph(4))] (5) or [Na(2)(THF)(5)(P(4)Ph(4))] (6) with one equivalent of HCl and subsequently with one equivalent of [CuCl(PCyp(3))(2)] (Cyp = cyclo-C(5)H(9)) gave the complex [Cu(4)(P(4)Ph(4))(2)(PH(2)Ph)(2)(PCyp(3))(2)] (7), presumably via disproportionation of the monoanion (P(4)HPh(4))(-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号