首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
[Na(2)(thf)(4)(P(4)Mes(4))] (1) (Mes = 2,4,6-Me(3)C(6)H(2)) reacts with one equivalent of [NiCl(2)(PEt(3))(2)], [NiCl(2)(PMe(2)Ph)(2)], [PdCl(2)(PBu(n)(3))(2)] or [PdCl(2)(PMe(2)Ph)(2)] to give the corresponding nickel(0) and palladium(0) dimesityldiphosphene complexes [Ni(eta(2)-P(2)Mes(2))(PEt(3))(2)] (2), [Ni(eta(2)-P(2)Mes(2))(PMe(2)Ph)(2)] (3), [Pd(eta(2)-P(2)Mes(2))(PBu(n)(3))(2)] (4) and [Pd(eta(2)-P(2)Mes(2))(PMe(2)Ph)(2)] (5), respectively, via a redox reaction. The molecular structures of the diphosphene complexes 2-5 are described.  相似文献   

2.
[Na{cyclo-(P(5)tBu(4))}] (1) reacts with [CuCl(PCyp(3))(2)] (Cyp=cyclo-C(5)H(9)) and [CuCl(PPh(3))(3)] (1:1) to give the corresponding copper(I) complexes with a tetra-tert-butylcyclopentaphosphanide ligand, [Cu{cyclo- (P(5)tBu(4))}(PCyp(3))(2)] (2) and [Cu{cyclo-(P(5)tBu(4))}(PPh(3))(2)] (3). The CuCl adduct of 2, [Cu(2)(mu-Cl){cyclo-(P(5)tBu(4))}(PCyp(3))(2)] (4), was obtained from the reaction of 1 with [CuCl(PCyp(3))(2)] (1:2). Compounds 2 and 3 rearrange, even at -27 degrees C, to give [Cu(4){cyclo- (P(4)tBu(3))PtBu}(4)] (5), in which ring contraction of the [cyclo-(P(5)tBu(4))](-) anion has occurred. The reaction of 1 with [AgCl(PCyp(3))](4) or [AgCl(PPh(3))(2)] (1:1) leads to the formation of [Ag(4){cyclo-(P(4)tBu(3))PtBu}(4)] (6). Intermediates, which are most probably mononuclear, "[Ag{cyclo-(P(5)tBu(4))}(PR(3))(2)]" (R=Cyp, Ph) could be detected in the reaction mixtures, but not isolated. Finally, the reaction of 1 with [AuCl(PCyp(3))] (1:1) yielded [Au{cyclo-(P(5)tBu(4))}(PCyp(3))] (7), whereas an inseparable mixture of [Au(3){cyclo-(P(5)tBu(4))}(3)] (8) and [Au(4){cyclo-(P(4)tBu(3))PtBu}(4)] (9) was obtained from the analogous reaction with [AuCl(PPh(3))]. Complexes 3-7 were characterised by (31)P NMR spectroscopy, and X-ray crystal structures were determined for 3-9.  相似文献   

3.
The reaction of AgClO(4) and NH(3) in acetone gave [Ag(NH=CMe(2))(2)]ClO(4) (1). The reactions of 1 with [RhCl(diolefin)](2) or [RhCl(CO)(2)](2) (2:1) gave the bis(acetimine) complexes [Rh(diolefin)(NH=CMe(2))(2)]ClO(4) [diolefin = 1,5 cyclooctadiene = cod (2), norbornadiene = nbd (3)] or [Rh(CO)(2)(NH=CMe(2))(2)]ClO(4) (4), respectively. Mono(acetimine) complexes [Rh(diolefin)(NH=CMe(2))(PPh(3))]ClO(4) [diolefin = cod (5), nbd (6)] or [RhCl(diolefin)(NH=CMe(2))] [diolefin = cod (7), nbd (8)] were obtained by reacting 2 or 3 with PPh(3) (1:1) or with Me(4)NCl (1:1.1), respectively. The reaction of 4 with PR(3) (R = Ph, To, molar ratio 1:2) led to [Rh(CO)(NH=CMe(2))(PR(3))(2)]ClO(4) [R = Ph (9), C(6)H(4)Me-4 = To (10)] while cis-[Rh(CO)(NH=CMe(2))(2)(PPh(3))]ClO(4) (11) was isolated from the reaction of 1 with [RhCl(CO)(PPh(3))](2) (1:1). The crystal structures of 5 and [Ag[H(2)NC(Me)(2)CH(2)C(O)Me](PTo(3))]ClO(4) (A), a product obtained in a reaction between NH(3), AgClO(4), and PTo(3), have been determined.  相似文献   

4.
[Rh(nbd)(PCyp(3))(2)][BAr(F) (4)] (1) [nbd = norbornadiene, Ar(F) = C(6)H(3)(CF(3))(2), PCyp(3) = tris(cyclopentylphosphine)] spontaneously undergoes dehydrogenation of each PCyp(3) ligand in CH(2)Cl(2) solution to form an equilibrium mixture of cis-[Rh{PCyp(2)(eta(2)-C(5)H(7))}(2)][BAr(F) (4)] (2 a) and trans-[Rh{PCyp(2)(eta(2)-C(5)H(7))}(2)][BAr(F) (4)] (2 b), which have hybrid phosphine-alkene ligands. In this reaction nbd acts as a sequential acceptor of hydrogen to eventually give norbornane. Complex 2 b is distorted in the solid-state away from square planar. DFT calculations have been used to rationalise this distortion. Addition of H(2) to 2 a/b hydrogenates the phosphine-alkene ligand and forms the bisdihydrogen/dihydride complex [Rh(PCyp(3))(2)(H)(2)(eta(2)-H(2))(2)][BAr(F) (4)] (5) which has been identified spectroscopically. Addition of the hydrogen acceptor tert-butylethene (tbe) to 5 eventually regenerates 2 a/b, passing through an intermediate which has undergone dehydrogenation of only one PCyp(3) ligand, which can be trapped by addition of MeCN to form trans-[Rh{PCyp(2)(eta(2)-C(5)H(7))}(PCyp(3))(NCMe)][BAr(F) (4)] (6). Dehydrogenation of a PCyp(3) ligand also occurs on addition of Na[BAr(F) (4)] to [RhCl(nbd)(PCyp(3))] in presence of arene (benzene, fluorobenzene) to give [Rh(eta(6)-C(6)H(5)X){PCyp(2)(eta(2)-C(5)H(7))}][BAr(F) (4)] (7: X = F, 8: X = H). The related complex [Rh(nbd){PCyp(2)(eta(2)-C(5)H(7))}][BAr(F) (4)] 9 is also reported. Rapid ( approximately 5 minutes) acceptorless dehydrogenation occurs on treatment of [RhCl(dppe)(PCyp(3))] with Na[BAr(F) (4)] to give [Rh(dppe){PCyp(2)(eta(2)-C(5)H(7))}][BAr(F) (4)] (10), which reacts with H(2) to afford the dihydride/dihydrogen complex [Rh(dppe)(PCyp(3))(H)(2)(eta(2)-H(2))][BAr(F) (4)] (11). Competition experiments using the new mixed alkyl phosphine ligand PCy(2)(Cyp) show that [RhCl(nbd){PCy(2)(Cyp)}] undergoes dehydrogenation exclusively at the cyclopentyl group to give [Rh(eta(6)-C(6)H(5)X){PCy(2)(eta(2)-C(5)H(7))}][BAr(F) (4)] (17: X = F, 18: X = H). The underlying reasons behind this preference have been probed using DFT calculations. All the complexes have been characterised by multinuclear NMR spectroscopy, and for 2 a/b, 4, 6, 7, 8, 9 and 17 also by single crystal X-ray diffraction.  相似文献   

5.
A series of group 6 transition metal half-sandwich complexes with 1,1-dichalcogenide ligands have been prepared by the reactions of Cp*MCl(4)(Cp* = eta(5)-C(5)Me(5); M = Mo, W) with the potassium salt of 2,2-dicyanoethylene-1,1-dithiolate, (KS)(2)C=C(CN)(2) (K(2)-i-mnt), or the analogous seleno compound, (KSe)(2)C=C(CN)(2) (K(2)-i-mns). The reaction of Cp*MCl(4) with (KS)(2)C=C(CN)(2) in a 1:3 molar ratio in CH(3)CN gave rise to K[Cp*M(S(2)C=C(CN)(2))(2)] (M = Mo, 1a, 74%; M = W, 2a, 46%). Under the same conditions, the reaction of Cp*MoCl(4) with 3 equiv of (KSe)(2)C=C(CN)(2) afforded K[Cp*Mo(Se(2)C=C(CN)(2))(2)] (3a) and K[Cp*Mo(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))] (4) in respective yields of 45% and 25%. Cation exchange reactions of 1a, 2a, and 3a with Et(4)NBr resulted in isolation of (Et(4)N)[Cp*Mo(S(2)C=C(CN)(2))(2)] (1b), (Et(4)N)[Cp*W(S(2)C=C(CN)(2))(2)] (2b), and (Et(4)N)[Cp*Mo(Se(2)C=C(CN)(2))(2)] (3b), respectively. Complex 4 crystallized with one THF and one CH(3)CN molecule as a three-dimensional network structure. Inspection of the reaction of Cp*WCl(4) with (KSe)(2)C=C(CN)(2) by ESI-MS revealed the existence of three species in CH(3)CN, [Cp*W(Se(2)C=C(CN)(2))(2)]-, [Cp*W(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))]-, and [Cp*W(Se(Se(2))C=C(CN)(2))(2)]-, of which [Cp*W(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))]-(5) was isolated as the main product. Treatment of 2a with 1/4 equiv of S(8) in refluxing THF resulted in sulfur insertion and gave rise to K[Cp*W(S(2)C=C(CN)(2))(S(S(2))C=C(CN)(2))](6), which crystallized with two THF molecules forming a three-dimensional network structure. 6 can also be prepared by refluxing 2a with 1/4 equiv of S(8) in THF. 3a readily added one Se atom upon treatment with 1 mol of Se powder in THF to give 4 in high yield, while the treatment of 3a or 4 with 2 equiv of Na(2)Se in THF led to formation of a dinuclear complex [(Cp*Mo)(2)(mu-Se)(mu-Se(Se(3))C=C(CN)(2))] (7). The structure of 7 consists of two Cp*Mo units bridged by a Se(2-) and a [Se(Se(3))C=C(CN)(2)](2-) ligand in which the triselenido group is arranged in a nearly linear way (163 degrees). The reaction of 2a with 2 equiv of CuBr in CH(3)CN yielded a trinuclear complex [Cp*WCu(2)(mu-Br)(mu(3)-S(2)C=C(CN)(2))(2)] (8), which crystallized with one CH(3)CN and generated a one-dimensional chain polymer through bonding of Cu to the N of the cyano groups.  相似文献   

6.
The reaction between [Rh(mu-OH)(COD)](2) (COD = 1,5-cyclooctadiene) and 73% HF in THF gives [Rh(3)(mu(3)-OH)(2)(COD)(3)](HF(2)) (1). Its crystal structure, determined by ab initio X-ray powder diffraction methods (from conventional laboratory data), contains complex trimetallic cations linked together in 1D chains by a mu(3)-OH...F-H-F...HO-mu(3) sequence of strong hydrogen bonds. The complex [Rh(mu-F)(COE)(2)](2) (COE = cyclooctene; 2), prepared by reacting [Rh(mu-OH)(COE)(2)](2) with NEt(3).3HF (3:2), has been characterized. Complex 1 reacts with PR(3) (1:3) to give [RhF(COD)(PR(3))] [R = Ph (3), C(6)H(4)OMe-4 (4), (i)Pr (5), Cy (6)] that can be prepared directly by reacting [Rh(mu-OH)(COD)](2) with 73% HF and PR(3) (1:2:2). The reactions of 1 with PPh(3) or Et(3)P have been studied by NMR spectroscopy at different molar ratios. Complexes [RhF(PEt(3))(3)] (7), [RhF(COD)(PEt(3))] (8), and [RhF(PPh(3))(3)] (9) have been detected. The complex [Rh(F)(NBD)(iPr(3)P)] (NBD = norbornadiene; 10) was prepared by the sequential treatment of [Rh(mu-OMe)(NBD)](2) with 1 equiv of NEt(3).3HF and (i)Pr(3)P. The first isolated bifluoride rhodium(I) complexes [Rh(FHF)(COD)(PR(3))] [R = Ph (11), (i)Pr (12), Cy (13)], obtained by reacting fluoro complexes 3, 5, and 6 with NEt(3).3HF (3:1), have been characterized. The crystal structures of 3 and 11 have been determined.  相似文献   

7.
Treatment of ThCl(4)(DME)(2) or UCl(4) with 1 equiv of dilithiumbis(iminophosphorano) methandiide, [Li(2)C(Ph(2)P═NSiMe(3))(2)] (1), afforded the chloro actinide carbene complexes [Cl(2)M(C(Ph(2)P═NSiMe(3))(2))] (2 (M = Th) and 3 (M = U)) in situ. Stable PCP metal-carbene complexes [Cp(2)Th(C(Ph(2)P═NSiMe(3))(2))] (4), [Cp(2)U(C(Ph(2)P═NSiMe(3))(2))] (5), [TpTh(C(Ph(2)P═NSiMe(3))(2))Cl] (6), and [TpU(C(Ph(2)P═NSiMe(3))(2))Cl] (7) were generated from 2 or 3 by further reaction with 2 equiv of thallium(I) cyclopentadienide (CpTl) in THF to yield 4 or 5 or with 1 equiv of potassium hydrotris(pyrazol-1-yl) borate (TpK) also in THF to give 6 or 7, respectively. The derivative complexes were isolated, and their crystal structures were determined by X-ray diffraction. All of these U (or Th)-carbene complexes (4-7) possess a very short M (Th or U)═carbene bond with evidence for multiple bond character. Gaussian 03 DFT calculations indicate that the M═C double bond is constructed by interaction of the 5f and 6d orbitals of the actinide metal with carbene 2p orbitals of both π and σ character. Complex 3 reacted with acetonitrile or benzonitrile to cyclo-add C≡N to the U═carbon double bond, thereby forming a new C-C bond in a new chelated quadridentate ligand in the bridged dimetallic complexes (9 and 10). A single carbon-U bond is retained. The newly coordinated uranium complex dimerizes with one equivalent of unconverted 3 using two chlorides and the newly formed imine derived from the nitrile as three connecting bridges. In addition, a new crystal structure of [CpUCl(3)(THF)(2)] (8) was determined by X-ray diffraction.  相似文献   

8.
[Rh(Cp)Cl(mu-Cl)](2) (Cp = pentamethylcyclopentadienyl) reacts (i) with [Au(NH=CMe(2))(PPh(3))]ClO(4) (1:2) to give [Rh(Cp)(mu-Cl)(NH=CMe(2))](2)(ClO(4))(2) (1), which in turn reacts with PPh(3) (1:2) to give [Rh(Cp)Cl(NH=CMe(2))(PPh(3))]ClO(4) (2), and (ii) with [Ag(NH=CMe(2))(2)]ClO(4) (1:2 or 1:4) to give [Rh(Cp)Cl(NH=CMe(2))(2)]ClO(4) (3) or [Rh(Cp)(NH=CMe(2))(3)](ClO(4))(2).H(2)O (4.H(2)O), respectively. Complex 3 reacts (i) with XyNC (1:1, Xy = 2,6-dimethylphenyl) to give [Rh(Cp)Cl(NH=CMe(2))(CNXy)]ClO(4) (5), (ii) with Tl(acac) (1:1, acacH = acetylacetone) or with [Au(acac)(PPh(3))] (1:1) to give [Rh(Cp)(acac)(NH=CMe(2))]ClO(4) (6), (iii) with [Ag(NH=CMe(2))(2)]ClO(4) (1:1) to give 4, and (iv) with (PPN)Cl (1:1, PPN = Ph(3)P=N=PPh(3)) to give [Rh(Cp)Cl(imam)]Cl (7.Cl), which contains the imam ligand (N,N-NH=C(Me)CH(2)C(Me)(2)NH(2) = 4-imino-2-methylpentan-2-amino) that results from the intramolecular aldol-type condensation of the two acetimino ligands. The homologous perchlorate salt (7.ClO(4)) can be prepared from 7.Cl and AgClO(4) (1:1), by treating 3 with a catalytic amount of Ph(2)C=NH, in an atmosphere of CO, or by reacting 4with (PPN)Cl (1:1). The reactions of 7.ClO(4) with AgClO(4) and PTo(3) (1:1:1, To = C(6)H(4)Me-4) or XyNC (1:1:1) give [Rh(Cp)(imam)(PTo(3))](ClO(4))(2).H(2)O (8) or [Rh(Cp)(imam)(CNXy)](ClO(4))(2) (9), respectively. The crystal structures of 3 and 7.Cl have been determined.  相似文献   

9.
The complexes [Rh(Tp)(PPh(3))(2)] (1a) and [Rh(Tp)(P(4-C(6)H(4)F)(3))(2)] (1b) combine with PhC(2)H, 4-NO(2)-C(6)H(4)CHO and Ph(3)SnH to give [Rh(Tp)(H)(C(2)Ph)(PR(3))] (R = Ph, 2a; R = 4-C(6)H(4)F, 2b), [Rh(Tp)(H)(COC(6)H(4)-4-NO(2))(PR(3))] (R = Ph, 3a), and [Rh(Tp)(H)(SnPh(3))(PR(3))] (R = Ph, 4a; R = 4-C(6)H(4)F, 4b) in moderate to good yield. Complexes 1a, 2b, 3a, and 4a have been structurally characterized. In 1a the Tp ligand is bidentate, in 2b, 3a, and 4a it is tridentate. Crystal data for 1a: space group P2(1)/c; a = 11.9664(19), b = 21.355(3), c = 20.685(3) A; beta = 112.576(7) degrees; V = 4880.8(12) A(3); Z = 4; R = 0.0441. Data for 2b: space group P(-)1; a = 10.130(3), b = 12.869(4), c = 17.038(5) A; alpha = 78.641(6), beta = 76.040(5), gamma = 81.210(6) degrees; V = 2100.3(11) A(3); Z = 2; R = 0.0493. Data for 3a: space group P(-)1; a = 10.0073(11), b = 10.5116(12), c = 19.874(2) A; alpha = 83.728(2), beta = 88.759(2), gamma = 65.756(2) degrees; V =1894.2(4) A(3); Z = 2; R = 0.0253. Data for 4a: space group P2(1)/c; a = 15.545(2), b = 18.110(2), c = 17.810(2) A; beta = 95.094(3) degrees; V = 4994.1(10) A(3); Z = 4; R = 0.0256. NMR data ((1)H, (31)P, (103)Rh, (119)Sn) are also reported.  相似文献   

10.
Na[cyclo-(P(5)tBu(4))] (1) reacts with [NiCl(2)(PEt(3))(2)] and [PdCl(2)(PMe(2)Ph)(2)] with elimination of tBuCl and formation of the corresponding metal(0) cyclopentaphosphene complexes [Ni{cyclo-(P(5)tBu(3))}(PEt(3))(2)] (2) and [Pd{cyclo-(P(5)tBu(3))}(PMe(2)Ph)(2)] (3). In contrast, complexes with the more labile triphenylphosphane ligand, such as [MCl(2)(PPh(3))(2)] (M=Ni, Pd), react with 1 with formation of [NiCl{cyclo-(P(5)tBu(4))}(PPh(3))] (4) and [Pd{cyclo-(P(5)tBu(4))}(2)] (5), respectively, in which the cyclo-(P(5)tBu(4)) ligand is intact. In the case of palladium, the cyclopentaphosphene complex [Pd{cyclo-(P(5)tBu(3))}(PPh(3))(2)] (6) in trace amounts is also formed. However, [Ni{cyclo-(P(5)tBu(4))}(2)] (7) is easily obtained by reaction of two equivalents of 1 and one equivalent of [NiCl(2)(bipy)] at room temperature. Complex 7 rearranges on heating in n-hexane or toluene to the previously unknown [Ni{cyclo-(P(5)tBu(4))PtBu}{cyclo-(P(4)tBu(3))}] (8), which presumably is formed via the intermediate [Ni{cyclo-(P(5)tBu(4))}{cyclo-(P(4)tBu(3))PtBu}], which, after an unexpected and unprecedented phosphanediide migration, gives 8, but always as an inseparable mixture with 7. In the reaction of 1 with [PtCl(2)(PPh(3))(2)], ring contraction and formation of [PtCl{cyclo-(P(4)tBu(3))PtBu}(PMe(2)Ph)] (9) is observed. Complexes 3-5 and 7-9 were characterised by (31)P NMR spectroscopy, and X-ray structures were obtained for 5-9.  相似文献   

11.
The generation of heterobimetallic complexes with two or three bridging sulfido ligands from mononuclear tris(sulfido) complex of tungsten [Et(4)N][(Me(2)Tp)WS(3)] (1; Me(2)Tp = hydridotris(3,5-dimethylpyrazol-1-yl)borate) and organometallic precursors is reported. Treatment of 1 with stoichiometric amounts of metal complexes such as [M(PPh(3))(4)] (M = Pt, Pd), [(PtMe(3))(4)(micro(3)-I)(4)], [M(cod)(PPh(3))(2)][PF(6)] (M = Ir, Rh; cod = 1,5-cyclooctadiene), [Rh(cod)(dppe)][PF(6)] (dppe = Ph(2)PCH(2)CH(2)PPh(2)), [CpIr(MeCN)(3)][PF(6)](2) (Cp = eta(5)-C(5)Me(5)), [CpRu(MeCN)(3)][PF(6)], and [M(CO)(3)(MeCN)(3)] (M = Mo, W) in MeCN or MeCN-THF at room temperature afforded either the doubly bridged complexes [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)M(PPh(3))] (M = Pt (3), Pd (4)), [(Me(2)Tp)W(=S)(micro-S)(2)M(cod)] (M = Ir, Rh (7)), [(Me(2)Tp)W(=S)(micro-S)(2)Rh(dppe)], [(Me(2)Tp)W(=S)(micro-S)(2)RuCp] (10), and [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)W(CO)(3)] (12) or the triply bridged complexes including [(Me(2)Tp)W(micro-S)(3)PtMe(3)] (5), [(Me(2)Tp)W(micro-S)(3)IrCp][PF(6)] (9), and [Et(4)N][(Me(2)Tp)W(micro-S)(3)Mo(CO)(3)] (11), depending on the nature of the incorporated metal fragment. The X-ray analyses have been undertaken to clarify the detailed structures of 3-5, 7, and 9-12.  相似文献   

12.
Treatment of the organoamido complexes [Rh(2)(mu-4-HNC(6)H(4)Me)(2)(L(2))(2)] (L(2) = 1,5-cyclooctadiene (cod), L = CO) with nBuLi gave solutions of the organoimido species [Li(2)Rh(2)(mu-4-NC(6)H(4)Me)(2)(L(2))(2)]. Further reaction of [Li(2)Rh(2)(mu-4-NC(6)H(4)Me)(2)(cod)(2)] with [Rh(2)(mu-Cl)(2)(cod)(2)] afforded the neutral tetranuclear complex [Rh(4)(mu-4-NC(6)H(4)Me)(2)(cod)(4)] (2), which rationalizes the direct syntheses of 2 from [Rh(2)(mu-Cl)(2)(cod)(2)] and Li(2)NC(6)H(4)Me. Reactions of [Li(2)Rh(2)(mu-4-NC(6)H(4)Me)(2)(CO)(4)] with chloro complexes such as [Rh(2)(mu-Cl)(2)(CO)(4)], [MCl(2)(cod)] (M = Pd, Pt), and [Ru(2)(mu-Cl)(2)Cl(2)(p-cymene)(2)] afforded the homo- and heterotrinuclear complexes PPN[Rh(3)(mu-4-NC(6)H(4)Me)(2)(CO)(6)] (5; PPN=bis(triphenylphosphine)iminium), [(CO)(4)Rh(2)(mu-4-NC(6)H(4)Me)(2)M(cod)] (M = Pd (6), Pt(7)) and [(CO)(4)Rh(2)(mu-4-NC(6)H(4)Me)(2)Ru(p-cymene)] (8), while the reaction with [AuCl(PPh(3))] gave the tetranuclear compound [(CO)(4)Rh(2)(mu--4-NC(6)H(4)Me)(2)[Au(PPh(3))](2)] (9). The structures of complexes 6, 8, and 9 were determined by X-ray diffraction studies. The anion of 5 reacts with [AuCl(PPh(3))] to give the butterfly cluster [[Rh(3)(mu-4-NC(6)H(4)Me)(2)(CO)(6)]Au(PPh(3))] (10), in which the Au atom is bonded to two rhodium atoms. Reaction of the anion of 5 with [Rh(cod)(NCMe)(2)](BF(4)) gave the tetranuclear complex [Rh(4)(mu-4-NC(6)H(4)Me)(2)(CO)(6)(cod)] (11) in which the Rh(cod) fragment is pi-bonded to one of the arene rings, while the reaction of the anion of 5 with [PdCl(2)(cod)] afforded the heterotrinuclear complex 6 through a metal exchange process.  相似文献   

13.
The reaction of [[RhCl(C(8)H(14))(2)](2)] (2) with iPr(2)PCH(2)CH(2)C(6)H(5) (L(1)) led, via the isolated dimer [[RhCl(C(8)H(14))(L(1))](2)] (3), to a mixture of three products 4 a-c, of which the dinuclear complex [[RhCl(L(1))(2)](2)] (4 a) was characterized by Xray crystallography. The mixture of 4a-c reacts with CO, ethene, and phenylacetylene to give the square-planar compounds trans-[RhCl(L)(L(1))(2)] (L=CO (5), C(2)H(4) (6), C=CHPh (9)). The corresponding allenylidene(chloro) complex trans-[RhCl(=C=C=CPh(2))(L(1))(2)] (11), obtained from 4 a-c and HC triple bond CC(OH)Ph(2) via trans-[RhCl[=C=CHC(OH)Ph(2)](L(1))(2)] (10), could be converted stepwise to the related hydroxo, cationic aqua, and cationic acetone derivatives 12-14, respectively. Treatment of 2 and [[RhCl(C(2)H(4))(2)](2)] (7) with two equivalents of tBu(2)PCH(2)CH(2)C(6)H(5) (L(2)) gave the dimers [[RhCl(C(8)H(14))(L(2))](2)] (15) and [[RhCl(C(2)H(4))(L(2))](2)] (16), which both react with L(2) in the molar ratio of 1:2 to afford the five-coordinate aryl(hydrido)rhodium(III) complex [RhHCl(C(6)H(4)CH(2)CH(2)PtBu(2)-kappa(2)C,P)(L(2))] (17) by C-H activation. The course of the reactions of 17 with CO, H(2), PhC triple bond CH, HCl, and AgPF(6), leading to the compounds 19-21, 24, and 25 a, respectively, indicate that the coordinatively unsaturated isomer of 17 with the supposed composition [RhCl(L(2))(2)] is the reactive species. Labeling experiments using D(2), DCl, and PhC triple bond CD support this proposal. With either [Rh(C(8)H(14))(eta(6)-L(2)-kappaP]PF(6) or [Rh(C(2)H(4))(eta(6)-L(n)-kappaP]PF(6) (n=1 and 2) as the starting materials, the corresponding halfsandwich-type complexes 27, 28, and 32 were obtained. The nonchelating counterpart of the dihydrido compound 32 with the composition [RhH(2)(PiPr(3))(eta(6)-C(6)H(6))]PF(6) (35) was prepared stepwise from [Rh(C(2)H(4))(PiPr(3))(eta(6)-C(6)H(6))]PF(6) and H(2) in acetone via the tris(solvato) species [RhH(2)(PiPr(3))(acetone)(3)]PF(6) (34) as intermediate. The synthesis of the bis(chelate) complex [Rh(eta(4)-C(8)H(12))(C(6)H(5)OCH(2)CH(2)PtBu(2)-kappa(2)O,P)]BF(4) (39) is also described. Besides 4 a, the compounds 17, 25 a, and 39 have been characterized by Xray crystal structure analysis.  相似文献   

14.
Reactions of the bis(hydrosulfido) complexes [Cp*Rh(SH)(2)(PMe(3))] (1a; Cp* = eta(5)-C(5)Me(5)) with [CpTiCl(3)] (Cp = eta(5)-C(5)H(5)) and [TiCl(4)(thf)(2)] in the presence of triethylamine led to the formation of the sulfido-bridged titanium-rhodium complexes [Cp*Rh(PMe(3))(micro(2)-S)(2)TiClCp] (2a) and [Cp*Rh(PMe(3))(micro2-S)(2)TiCl(2)] (3a), respectively. Complex 3a and its iridium analogue 3b were further converted into the bis(acetylacetonato) complexes [Cp*M(PMe(3))(micro(2)-S)(2)Ti(acac)(2)] (4a, M = Rh; 4b, M = Ir) upon treatment with acetylacetone. The hydrosulfido complexes 1a and [Cp*Ir(SH)(2)(PMe(3))] (1b) also reacted with [VCl(3)(thf)(3)] and [Mo(CO)(4)(nbd)] (nbd = 2,5-norbornadiene) to afford the cationic sulfido-bridged VM2 complexes [(Cp*M(PMe(3))(micro2-S)(2))2V](+) (5a(+), M = Rh; 5b(+), M = Ir) and the hydrosulfido-bridged MoM complexes [Cp*M(PMe(3))(micro2-SH)(2)Mo(CO)(4)] (6a, M = Rh; 6b, M = Ir), respectively.  相似文献   

15.
Deprotonation of the phosphine complexes Au(PHR(2))Cl with aqueous ammonia gave the gold(I) phosphido complexes [Au(PR(2))](n)() (PR(2) = PMes(2) (1), PCy(2) (2), P(t-Bu)(2) (3), PIs(2) (4), PPhMes (5), PHMes (6); Mes = 2,4,6-Me(3)C(6)H(2), Is = 2,4,6-(i-Pr)(3)C(6)H(2), Mes = 2,4,6-(t-Bu)(3)C(6)H(2), Cy = cyclo-C(6)H(11)). (31)P NMR spectroscopy showed that these complexes exist in solution as mixtures, presumably oligomeric rings of different sizes. X-ray crystallographic structure determinations on single oligomers of 1-4 revealed rings of varying size (n = 4, 6, 6, and 3, respectively) and conformation. Reactions of 1-3 and 5 with PPN[AuCl(2)] gave PPN[(AuCl)(2)(micro-PR(2))] (9-12, PPN = (PPh(3))(2)N(+)). Treatment of 3 with the reagents HI, I(2), ArSH, LiP(t-Bu)(2), and [PH(2)(t-Bu)(2)]BF(4) gave respectively Au(PH(t-Bu)(2))(I) (14), Au(PI(t-Bu)(2))(I) (15), Au(PH(t-Bu)(2))(SAr) (16, Ar = p-t-BuC(6)H(4)), Li[Au(P(t-Bu)(2))(2)] (17), and [Au(PH(t-Bu)(2))(2)]BF(4) (19).  相似文献   

16.
The unsymmetrical diphosphinomethane ligand Ph(2)PCH(2)P(NC(4)H(4))(2) L has been prepared from the reaction of Ph(2)PCH(2)Li with PCl(NC(4)H(4))(2). The diphenylphosphino group can be selectively oxidized with sulfur to give Ph(2)P(S)CH(2)P(NC(4)H(4))(2) 1. The reaction of L with [MCl(2)(cod)] (M = Pd, Pt) gives the chelate complexes [MCl(2)(L-kappa(2)P,P')] (2, M = Pd; 3, M = Pt) in which the M-P bond to the di(N-pyrrolyl)phosphino group is shorter than that to the corresponding diphenylphosphino group. However, the shorter Pd-P bond is cleaved on reaction of 2 with an additional 1 equiv of L to give [PdCl(2)(L-kappa(1)P)(2)] 4. Complex 4 reacts with [PdCl(2)(cod)] to regenerate 2, and with [Pd(2)(dba)(3)].CHCl(3) to give the palladium(I) dimer [Pd(2)Cl(2)(mu-L)(2)] 5, which exists in solution and the solid state as a 1:1 mixture of head-to-head (HH) and head-to-tail (HT) isomers. The palladium(II) dimer [Pd(2)Cl(2)(CH(3))(2)(mu-L)(2)] 6, formed by the reaction of [PdCl(CH(3))(cod)] with L, also exists in solution as a mixture of HH and HT isomers, although in this case the HT isomer prevails at low temperature and crystallizes preferentially. Complex 6 reacts with TlPF(6) to give the A-frame complex [Pd(2)(CH(3))(2)(mu-Cl)(mu-L)(2)]PF(6) 7. The reaction of L with [RuCp*(mu(3)-Cl)](4) leads to the dimer [Ru(2)Cp*(2)(mu-Cl)(2)(mu-L)] 8, for which the enthalpy of reaction has been measured. The reaction of L with [Rh(mu-Cl)(cod)](2) gives a mixture of compounds from which the dimer [Rh(2)(mu-Cl)(cod)(2)(mu-L)]PF(6) 9 can be isolated. The crystal structures of 2.CHCl(3), 3.CH(2)Cl(2), 4, 5.(1)/(4)CH(2)Cl(2), 6, 7.2CH(2)Cl(2), 8, and 9.CH(2)Cl(2) are reported.  相似文献   

17.
Treatment of [Mo(N(2))(PMe(3))(5)] with two equivalents GaCp* (Cp* = η(5)-C(5)(CH(3))(5)) leads to the formation of cis-[Mo(GaCp*)(2)(PMe(3))(4)] (1), while AlCp* did not react with this precursor. In addition, [Ni(GaCp*)(2)(PPh(3))(2)] (2a), [Ni(AlCp*)(2)(PPh(3))(2)] (2b), [Ni(GaCp*)(2)(PCy(3))(2)] (3a), [Ni(GaCp*)(2)(PMe(3))(2)] (3b), [Ni(GaCp*)(3)(PCy(3))] (4) and [Ni(GaCp*)(PMe(3))(3)] (5) have been prepared in high yields by a direct synthesis from [Ni(COD)(2)] and stoichiometric amounts of the ligands PR(3) and ECp* (E = Al, Ga), respectively. All compounds have been fully characterized by (1)H, (13)C, and (31)P NMR spectroscopy, elemental analysis and single crystal X-ray diffraction studies.  相似文献   

18.
The complex [Rh(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (1) has been prepared by reaction of the precursor [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), 2,6-bis[4'(S)-isopropyloxazolin-2'-yl]pyridine (pybox), CO, and NaPF(6). Complex 1 reacts with monodentate phosphines to give the complexes [Rh(kappa(1)-N-pybox)(CO)(PR(3))(2)][PF(6)] (R(3) = MePh(2) (2), Me(2)Ph (3), (C(3)H(5))Ph(2) (4)), which show a previously unseen monodentate coordination of pybox. Complex 1 undergoes oxidative addition reactions with iodine and CH(3)I leading to the complexes [RhI(R)(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (R = I (5); R = CH(3) (6)). Furthermore, a new allenyl Rh(III)-pybox complex of formula [Rh(CH=C=CH(2))Cl(2)(kappa(3)-N,N,N-pybox)] (7) has been synthesized by a one-pot reaction from [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), pybox, and an equimolar amount of propargyl chloride.  相似文献   

19.
Bis(1-R-imidazol-2-yl)disulfides, (mim(R))2 (R = Ph, Bu(t)), and diselenides, (seim(Mes))2, serve as bidentate N,N-donor ligands for main-group and transition metals. For example, [kappa2-(mim(Bu)(t))2]MCl2 (M = Fe, Co, Ni, Zn), [kappa2-(mim(Ph))2]MCl2 (M = Co, Zn), [kappa2-(mim(Bu)(t))2]CuX (X = Cl, I), and [kappa2-(seim(Mes))2]MCl2 (M = Fe, Co, Ni) are obtained by treatment of (mim(Bu)(t))2 or (seim(Mes))2 with the respective metal halide and have been structurally characterized by X-ray diffraction. On the other hand, the zerovalent nickel complex Ni(PMe3)4 effects cleavage of the disulfide bond of (mim(Bu)(t))2 to give square-planar trans-Ni(PMe3)2(mim(Bu)(t))2 in which the (mim(Bu)(t)) ligands coordinate via nitrogen rather than sulfur, a most uncommon coordination mode for this class of ligands. Although [kappa2-(mim(R))2]MCl2 (M = Fe, Co, Ni, Zn) are not subject to homolytic cleavage of the S-S bond because the tetravalent state is not readily accessible, the observation that [kappa2-(mimPh)2]CoCl2 and [kappa2-(mim(Bu)(t))2]CoCl2 form an equilibrium mixture with the asymmetric disulfide [kappa2-(mim(Ph))(mim(Bu)(t))]CoCl2 indicates that S-S bond cleavage via another mechanism is possible. Likewise, metathesis between disulfide and diselenide ligands is observed in the formation of [kappa2-(mim(Bu)(t))(seim(Mes))]CoCl2 upon treatment of [kappa2-(mim(Bu)(t))2]CoCl2 with [kappa2-(seim(Mes))2]CoCl2.  相似文献   

20.
In contrast to the neutral macrocycle [UN*(2)(N,C)] (1) [N* = N(SiMe(3))(3); N,C = CH(2)SiMe(2)N(SiMe(3))] which was quite inert toward I(2), the anionic bismetallacycle [NaUN*(N,C)(2)] (2) was readily transformed into the enlarged monometallacycle [UN*(N,N)I] (4) [N,N = (Me(3)Si)NSiMe(2)CH(2)CH(2)SiMe(2)N(SiMe(3))] resulting from C-C coupling of the two CH(2) groups, and [NaUN*(N,O)(2)] (3) [N,O = OC(═CH(2))SiMe(2)N(SiMe(3))], which is devoid of any U-C bond, was oxidized into the U(V) bismetallacycle [Na{UN*(N,O)(2)}(2)(μ-I)] (5). Sodium amalgam reduction of 4 gave the U(III) compound [UN*(N,N)] (6). Addition of MN(3) or MCN to the (N,C), (N,N), and (N,O) metallacycles 1, 4, and 5 led to the formation of the anionic azide or cyanide derivatives M[UN*(2)(N,C)(N(3))] [M = Na, 7a or Na(15-crown-5), 7b], M[UN*(2)(N,C)(CN)] [M = NEt(4), 8a or Na(15-crown-5), 8b or K(18-crown-6), 8c], M[UN*(N,N)(N(3))(2)] [M = Na, 9a or Na(THF)(4), 9b], [NEt(4)][UN*(N,N)(CN)(2)] (10), M[UN*(N,O)(2)(N(3))] [M = Na, 11a or Na(15-crown-5), 11b], M[UN*(N,O)(2)(CN)] [M = NEt(4), 12a or Na(15-crown-5), 12b]. In the presence of excess iodine in THF, the cyanide 12a was converted back into the iodide 5, while the azide 11a was transformed into the neutral U(V) complex [U(N{SiMe(3)}SiMe(2)C{CHI}O)(2)I(THF)] (13). The X-ray crystal structures of 4, 7b, 8a-c, 9b, 10, 12b, and 13 were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号