首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Samples of the zeolite mordenite with different Si/Al ratios were used to synthesize materials with monomeric and oligomeric copper sites that are active in the direct conversion of methane into methanol. A comparison of two reactivation protocols with oxygen (aerobic oxidation) and water (anaerobic oxidation), respectively, revealed that such copper–oxo species possess different reactivity towards methane and water. We show for the first time that oligomeric copper species exhibit high activity under both aerobic and anaerobic activation conditions, whereas monomeric copper sites produce methanol only in aerobic processes.  相似文献   

2.
The molecular sieves SBA-15 with ceria, zirconia and mixed cerium-zirconium oxides were synthesized and used as supports for gold and copper species. The materials were characterised using a FTIR in situ spectroscopy combined with the adsorption of methanol and oxygen as probe molecules, which allowed the monitoring of the changes on the surface, in particular the creation of the intermediates species on the active sites of materials. The presence of interactions between gold and copper in bimetallic catalysts was considered during the reaction of methanol oxidation. The goal of this work was studied the changes of intermediates adsorbed on the surface of catalysts during the oxidation of methanol after treatment at selected temperature. The monometallic gold and the bimetallic copper–gold catalysts were tested in the reaction of methanol oxidation in the gas phase in situ.  相似文献   

3.
甲烷催化部分氧化制合成气的反应机理   总被引:6,自引:0,他引:6  
借助脉冲反应、质谱-程序升温表面反应(MS-TPSR)等技术研究了Ni/α-Al2O3催化剂上甲烷催化部分氧化制合成气(POM)的反应机理.结果表明,NiO上CH4不能解离产生H2只有当NiO被CH4还原为Ni0后,CH4才能解高产生H2,Ni0是CH4活化和POM反应的活性相;POM反应机理遵循直接氧化机理,CH4和O2均在Ni0上活化,活化过程形成的Ni…C和Niδ…Oδ物种是反应历程中的关键物种,Niδ …Oδ物种高选择性地与CH4解离产生的碳物种Ni…C反应生成CO.  相似文献   

4.
The reduced and reoxidized Cu-Zn-Si oxide catalysts as layered copper-zinc hydroxo silicates with the zincsilite structure were studied using in situ and ex situ X-ray diffraction analysis, transmission electron microscopy, and the temperature dependence of magnetic susceptibility. The catalysts were prepared by homogeneous deposition-precipitation. It was found that Cu0 particles were formed on the surface of a layered hydrosilicate with the zincsilite structure upon reduction with hydrogen. The reoxidation of the reduced samples with a mixture of oxygen and an inert gas, which contained no more than 0.05 vol % O2, resulted in the formation of individual Cu2O and CuO phases; copper ions did not return to the hydrosilicate structure. Catalytic tests of Cu-Zn-Si catalysts in methanol synthesis indicate that the specific catalytic activity of copper metal particles grows linearly with increasing zinc loading. This fact suggests that copper metal particles, which were obtained by the reduction of Cu2+ ions from the copper-zinc hydroxo silicate with the zincsilite structure, were responsible for activity in methanol synthesis. Consequently, the ability to return copper ions to a precursor compound in reoxidation with oxygen at low concentrations, which is known for reduced Cu/ZnO catalysts (these catalysts are highly active in methanol synthesis), is not related to the catalytic activity in methanol synthesis.  相似文献   

5.
Two series of Cu/ZSM-5 catalysts,loading from 5 to 20 wt% CuO,were prepared by the deposition-precipitation and impregnation methods,respectively.The catalysts prepared by the impreg- nation method showed better catalytic performances than those prepared by the deposition-precipitation method and the increase of copper loading favored methane conversion.20Cu(I)/ZSM-5 had the highest activity with T_(90%)of 746 K,and for 20Cu(D)/ZSM-5,T_(90%)was as high as 804 K.The characteriza- tion of X-ray diffraction(XRD),temperature-programmed reduction(TPR),temperature-programmed desorption(TPD),and X-ray photoelectron spectroscopy(XPS)revealed that the dispersion of cop- per species could be improved by using the deposition-precipitation method instead of the impregnation method,but the fraction of surface CuO,corresponding to active sites for methane oxidation,was larger on 20Cu(I)/ZSM-5 than 20Cu(D)/ZSM-5.The results of Pyridine-Fourier transform infrared spectrum (Py-FT-IR)showed that a majority of Lewis acidity and a minority of Brφnsted acidity were present on Cu/ZSM-5 catalysts.20Cu(I)/ZSM-5 presented more Lewis acid sites.The number of Lewis acid sites changed significantly with preadsorption of oxygen.Adsorption of methane and oxygen on acid sites was observed.The properties of Cu/ZSM-5 catalysts were correlated with the activity for methane oxidation.  相似文献   

6.
The reaction of methane with copper‐exchanged mordenite with two different Si/Al ratios was studied by means of in situ NMR and infrared spectroscopies. The detection of NMR signals was shown to be possible with high sensitivity and resolution, despite the presence of a considerable number of paramagnetic CuII species. Several types of surface‐bonded compounds were found after reaction, namely molecular methanol, methoxy species, dimethyl ether, mono‐ and bidentate formates, CuI monocarbonyl as well as carbon monoxide and dioxide, which were present in the gas phase. The relative fractions of these species are strongly influenced by the reaction temperature and the structure of the copper sites and is governed by the Si/Al ratio. While methoxy species bonded to Brønsted acid sites, dimethyl ether and bidentate formate species are the main products over copper‐exchange mordenite with a Si/Al ratio of 6; molecular methanol and monodentate formate species were observed mainly over the material with a Si/Al ratio of 46. These observations are important for understanding the methane partial oxidation mechanism and for the rational design of the active materials for this reaction.  相似文献   

7.
采用FT-IR和程序升温热谱技术研究了Mo/HZSM-5催化剂的制备过程.结果表明Mo/HZSM-5样品在合适的温度下焙烧一定时间,Mo物种与HZSM-5分子筛的酸中心(主要是强酸中心)起作用,并且一部分Mo物种会迁移到分子筛孔道内.在外表面的Mo物种和在孔道内强酸中心作用的Mo物种,可能是对甲烷活化起作用的  相似文献   

8.
Methanol was co‐adsorbed with oxygen on Ru(0001) under conditions approaching those of real catalysts: at room temperature and at relatively high pressures and exposures, together with a comparative analysis of flat and defective surfaces. To clarify reaction routes, parallel exposures to formaldehyde and oxygen have also been analyzed. It is found that for both mixtures of gases, a new reaction path is activated on defective surfaces, in which methanol is oxidized to formate. Furthermore, at variance with pure methanol adsorption, apart from CO, various intermediates are observed in both flat and defective surfaces. On flat surfaces, formaldehyde and formyl are recognized whereas on defective ones methoxy and formate are detected. A model involving steering effects is presented, which accounts for the activity of surface defects towards the synthesis of formate.  相似文献   

9.
The dehydroaramatization of methane over W-supported ZSM-5 with varying degrees of Li^ ion-exchanged catalysts was studied with and without oxygen at 1073 K and atmospheric pressure.Catalyst activity and stability were found to be influenced by the catalyst acidity related to BrSnsted acid sites and by the presence of oxygen in the feed. The NH3-TPD and FTIR-pyridine results demonstrated that partially exchanged of H^ ions by Li^ into the W/HZSM-5 catalysts could be used to control the amount of strong acid sites on the catalyst surface. Without oxygen, the 3WHLi-Z (5:1) catalyst that has strong acid sites equal to nearly 74% of the original strong acid sites in the parent HZSM-5 exhibited the highest methane conversion and selectivity towards aromatics. However, the catalyst deactivated in a five hour period. In the presence of oxygen, the catalyst activity and stability could be improved further.The results of this study revealed that a suitable amount of strong Bronsted acid sites as well as oxygen addition in the feed increased the catalyst activity and stability. The 3WHLi-Z(5:1) catalyst exhibited improved performance in the dehydroaromatization of methane.  相似文献   

10.
The partial oxidation of methane to methanol presents one of the most challenging targets in catalysis. Although this is the focus of much research, until recently, approaches had proceeded at low catalytic rates (<10 h?1), not resulted in a closed catalytic cycle, or were unable to produce methanol with a reasonable selectivity. Recent research has demonstrated, however, that a system composed of an iron‐ and copper‐containing zeolite is able to catalytically convert methane to methanol with turnover frequencies (TOFs) of over 14 000 h?1 by using H2O2 as terminal oxidant. However, the precise roles of the catalyst and the full mechanistic cycle remain unclear. We hereby report a systematic study of the kinetic parameters and mechanistic features of the process, and present a reaction network consisting of the activation of methane, the formation of an activated hydroperoxy species, and the by‐production of hydroxyl radicals. The catalytic system in question results in a low‐energy methane activation route, and allows selective C1‐oxidation to proceed under intrinsically mild reaction conditions.  相似文献   

11.
The solvent‐free selective oxidation of alcohols to aldehydes with molecular oxygen is highly attractive yet challenging. Interfacial sites between a metal and an oxide support are crucial in determining the activity and selectivity of such heterogeneous catalysts. Herein, we demonstrate that the use of supported single‐atom catalysts (SACs) leads to high activity and selectivity in this reaction. The significantly increased number of interfacial sites, resulting from the presence of individually dispersed metal atoms on the support, renders SACs one or two orders of magnitude more active than the corresponding nanoparticle (NP) catalysts. Lattice oxygen atoms activated at interfacial sites were found to be more selective than O2 activated on metal NPs in oxidizing the alcohol substrate. This work demonstrates for the first time that the number of interfacial sites is maximized in SACs, providing a new avenue for improving catalytic performance by developing appropriate SACs for alcohol oxidation and other reactions occurring at metal–support interfacial sites.  相似文献   

12.
The solvent‐free selective oxidation of alcohols to aldehydes with molecular oxygen is highly attractive yet challenging. Interfacial sites between a metal and an oxide support are crucial in determining the activity and selectivity of such heterogeneous catalysts. Herein, we demonstrate that the use of supported single‐atom catalysts (SACs) leads to high activity and selectivity in this reaction. The significantly increased number of interfacial sites, resulting from the presence of individually dispersed metal atoms on the support, renders SACs one or two orders of magnitude more active than the corresponding nanoparticle (NP) catalysts. Lattice oxygen atoms activated at interfacial sites were found to be more selective than O2 activated on metal NPs in oxidizing the alcohol substrate. This work demonstrates for the first time that the number of interfacial sites is maximized in SACs, providing a new avenue for improving catalytic performance by developing appropriate SACs for alcohol oxidation and other reactions occurring at metal–support interfacial sites.  相似文献   

13.
《中国化学》2018,36(6):531-537
Raw and modified albite catalysts, including Pb/Albite and Fe/Albite catalysts, have been investigated for methane conversion to C2 hydrocarbons under non‐oxidative conditions. Introduction of Pb to albite improved the activity and selectivity to non‐coke products. Based on characterization, it was found that Pb entered into the alkali and alkaline‐earth metal sites of albite, while partial Fe doped in the tetrahedron sites and the other loaded on the surface of albite. At the reaction temperature of 1073 K, methane gas hourly space velocity (GHSV) of 2 L·gcat–1·h–1, catalyst dosage of 0.25 g (300 mesh), the methane conversion catalyzed by raw albite in the fixed‐bed micro reactor exhibited a methane conversion of 3.32%. Notably, introducing a Pb content of 3.4 wt% into albite greatly enhanced the conversion of methane up to 8.19%, and the selectivity of C2 hydrocarbons reached 99% without any coke under the same reaction conditions. While Fe‐doping could weakly heighten the methane conversion to 3.97%, and coke was formed. Thus, a comparison of Pb/Albite and Fe/Albite catalysts demonstrates that the catalytic activity of albite is mainly decided by alkali and alkaline‐earth metal sites, and lead‐modification can effectively improve the catalytic activity of albite.  相似文献   

14.
甲烷在钼/含磷五元环沸石催化剂上的无氧芳构化   总被引:2,自引:0,他引:2  
舒玉瑛  舒兴田 《分子催化》1997,11(3):173-179
报道甲烷在无氧条件下,在一种不同于Mo/HZSM-5催化剂的钼/含磷五元环沸石催化剂上催化转化制高级烃类(苯等)的新反应,实验表明,在钼/含磷五元环沸石催化刘,当Mo浸渍的重分数为20%时,甲烷具有最佳反应活性,其转化率为9.23%,工选择怀为92.745,用BET、XRD、NH3-TPD和TPRcMo  相似文献   

15.
Different surface sites of solid catalysts are usually quantified by dedicated chemisorption techniques from the adsorption capacity of probe molecules, assuming they specifically react with unique sites. In case of methanol synthesis catalysts, the Cu surface area is one of the crucial parameters in catalyst design and was for over 25 years commonly determined using diluted N2O. To disentangle the influence of the catalyst components, different model catalysts were prepared and characterized using N2O, temperature programmed desorption of H2, and kinetic experiments. The presence of ZnO dramatically influences the N2O measurements. This effect can be explained by the presence of oxygen defect sites that are generated at the Cu‐ZnO interface and can be used to easily quantify the intensity of Cu‐Zn interaction. N2O in fact probes the Cu surface plus the oxygen vacancies, whereas the exposed Cu surface area can be accurately determined by H2.  相似文献   

16.
A comparative study of the role of lattice and gaseous oxygen in theoxidative coupling of methane over Na~ /Cao and Ca_xSr_(1-x)TiO_3 perovskiteoxide catalysts was performed by using a pulse reaction technique with CH_4,O_2 and mixtures of CH_4and O_2.It was found that there is an oxygen species onthe Surface of Cao which is active only for the total oxidation of methane at thereaction temperature.These oxygen species.once reacted with methane andconsumed,can be regenerated by the adsorption of oxygen molecules from thegas phase or by the migration of the lattice oxysen from the bulk onto thesurface.In contrast,no such oxygen species and no reaction can be detected bymethane pulsed over Ca_xSr_(1-x)TiO_3perovskite oxide catalysts.Na~ can heavilysuppress the non-selective oxygen species on the surface,and When 5mol%Na~ was incorporated onto the surface of Cao,the sample showed no reactivityto methane.When oxygen exists in the gas phase,or the pulse containsmethane and oxygen,the reaction over(Cao is mai  相似文献   

17.
通过CuO/ZrO2及含Y或La助剂的CuO/ZrO2催化剂对OC/H2合成甲醇性能的研究,发现稀土助剂能有效地提高该催化剂的活性。XRD结果说明,CuO|ZrO2中加入Y或La助剂可使氧化铜处于较高的分散状态。TPR结果揭示CuO/ZrO2催化剂中存在着在室温就很容易被氧人的铜,它在催化剂中含量的增加导致催化剂活性的提高,是关切的活性组份。助剂的加入使这种易被氧化的铜含量增加。XPS表面分析结果  相似文献   

18.
Research on O2 activation at ligated CuI is fueled by its biological relevance and the quest for efficient oxidation catalysts. A rarely observed reaction is the formation of a CuII‐O‐CuII species, which is more special than it appears at first sight: a single oxo ligand between two CuII centers experiences considerable electron density, and this makes the corresponding complexes reactive and difficult to access. Hence, only a small number of these compounds have been synthesized and characterized unequivocally to date, and as biological relevance was not apparent, they remained unappreciated. However, recently they moved into the spotlight, when CuII‐O‐CuII cores were proposed as the active species in the challenging oxidation of methane to methanol at the surface of a Cu‐grafted zeolite and in the active center of the copper enzyme particulate methane monooxygenase. This Minireview provides an overview of these systems with a special focus on their reactivity and spectroscopic features.  相似文献   

19.
采用原位合成法在γ-Al_2O_3载体表面上合成了Zn-Al水滑石,再采用顺序浸渍法制备了一系列Ce/Cu/Zn-Al催化剂,并采用XRD、BET、H_2-TPR和XPS等手段对催化剂进行了表征,考察了焙烧温度对Ce/Cu/Zn-Al催化剂表面结构及其催化甲醇水蒸气重整制氢性能的影响。结果表明,焙烧温度主要影响了催化剂的Cu比表面积、表面氧空穴含量和Cu-Ce间相互作用。当焙烧温度为500℃时,催化剂Cu的比表面积较大,表面氧空穴含量较多,Cu-Ce间相互作用较强,因此,催化甲醇水蒸气重整制氢活性较好。当焙烧温度升高到700℃时,Cu物种主要以稳定的CuAl_2O_4尖晶石形式存在,不利于甲醇水蒸气重整制氢反应的进行,因此,催化活性较差。  相似文献   

20.
在催化剂甲烷氧化偶联反应性能研究的基础上,利用CO2-TPD技术考察了不同的碱金属化合物-La2O3/BaCo3催化剂的表面碱性。结果表明,BaCO3的协同作用,碱金属化合物的添加都增大了催化剂表面碱性的强度,也增加了碱性位的数量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号