首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transition metal salen complex MoO2–salen was successfully tethered onto amino‐functionalized graphene oxide (designated as MoO2–salen–GO), which was tested in the epoxidation of various alkenes using tert‐butylhydroperoxide or H2O2 as oxidant. Characterization results showed that dioxomolybdenum(VI) complex was successfully grafted onto the amino‐functionalized graphene oxide and the structure of the graphene oxide was well preserved after several stepwise synthesis procedures. Catalytic tests showed that heterogeneous catalyst MoO2–salen–GO was more active than its homogeneous analogue MoO2–salen in the epoxidation of cyclooctene due to site isolation. In addition, the MoO2–salen–GO catalyst could be reused three times without significant loss of activity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In this report, we introduced Graphene oxide‐iron oxide (GO‐Fe3O4) nanocomposites as a heterogeneous catalyst for arylation/alkylation of benzothiazoles with aldehydes and benzylic alcohols in the presence of diisopropyl azodicarboxylate (DIAD) as an oxidant which exclusively produced 2‐aryl (alkyl)‐1H–benzothizoles in moderate to excellent yields. The absence of precious metals and toxic solvent, easy product isolation, and recyclability of the GO‐Fe3O4 with no loss of activity are notable advantages of this method.  相似文献   

3.
采用微波处理氧化石墨烯(GO)与乙二醇(EG)、乙二胺(ED)混合液的方法制备氮掺杂石墨烯(NG),使用旋转圆盘电极对NG催化氧还原在碱性溶液中反应进行研究,并考察了不同微波辐射时间、ED与EG之比对反应性能的影响。采用X射线衍射仪(XRD)、透射电子显微镜(TEM)、拉曼光谱(Raman)和傅里叶变换红外光谱(FT-IR)研究了NG催化剂的结构与性质。相比于未掺氮的石墨烯样品,NG表现出更正的起始电位和接近四电子的转移过程。NG中掺杂氮原子的键合方式通过XPS进行表征,结果表明起始电位的高低取决于石墨氮含量。此外,所有表征结果表明总氮含量与氧还原反应性能没有直接关系。  相似文献   

4.
采用微波处理氧化石墨烯(GO)与乙二醇(EG)、乙二胺(ED)混合液的方法制备氮掺杂石墨烯(NG),使用旋转圆盘电极对NG催化氧还原在碱性溶液中反应进行研究,并考察了不同微波辐射时间、ED与EG之比对反应性能的影响。采用X射线衍射仪(XRD)、透射电子显微镜(TEM)、拉曼光谱(Raman)和傅里叶变换红外光谱(FT-IR)研究了NG催化剂的结构与性质。相比于未掺氮的石墨烯样品,NG表现出更正的起始电位和接近四电子的转移过程。NG中掺杂氮原子的键合方式通过XPS进行表征,结果表明起始电位的高低取决于石墨氮含量。此外,所有表征结果表明总氮含量与氧还原反应性能没有直接关系。  相似文献   

5.

Abstract  

A new polymer-supported Cu(II) Schiff base complex has been synthesized and characterized by elemental (including metal) analysis, FT-IR spectroscopy, UV–Vis diffuse reflectance spectroscopy, thermogravimetric analysis, and scanning electron microscopy. The catalytic performance of this complex was evaluated in the epoxidation of styrene in acetonitrile/N,N-dimethylformamide (9:1) mixture with 70% tert-butyl hydroperoxide as an oxidizing agent under liquid phase reaction conditions for selective synthesis of styrene oxide. Suitable reaction conditions have been optimized by considering the effects of various reaction parameters such as temperature, reaction time, solvent, oxidant, catalyst amount, and styrene to hydroperoxide molar ratio for the maximum conversion of styrene as well as selectivity of styrene oxide. We have also investigated the epoxidation reaction of various olefins under the optimized reaction conditions. Comparison between catalytic activities of the polymer-supported Cu(II) Schiff base complex and its homogeneous analogue showed that the polymer-supported catalyst was more active. This heterogeneous complex was reused for five times. The selectivity of the heterogeneous catalyst does not change even after five times of reusing.  相似文献   

6.
An SO3H‐functionalized nano‐MGO‐D‐NH2 catalyst has been prepared by multi‐functionalization of a magnetic graphene oxide (GO) nanohybrid and evaluated in the synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3‐d]pyrimidinone derivatives. The GO/Fe3O4 (MGO) hybrid was prepared via an improved Hummers method followed by the covalent attachment of 1,4‐butanesultone with the amino group of the as‐prepared polyamidoamine‐functionalized MGO (MGO‐D‐NH2) to give double‐functionalized magnetic nanoparticles as the catalyst. The prepared nanoparticles were characterized to confirm their synthesis and to precisely determine their physicochemical properties. In summary, the prepared catalyst showed marked recyclability and catalytic performance in terms of reaction time and yield of products. The results of this study are hoped to aid the development of a new class of heterogeneous catalysts to show high performance and as excellent candidates for industrial applications.  相似文献   

7.
Thiol‐ene click reaction was successfully employed for chemical modification of graphene oxide (GO) by one‐step synthesis. Herein, 2,2‐azobis(2‐methylpropionitrile) (AIBN) was used as thermal catalyst and cysteamine hydrochloride (HS?(CH2)2?NH2HCl) was used as thiol‐containing compound, which is incorporated to GO surface upon reaction with the C=C bonds. The hydrochloride acts as protecting group for the amine, which is finally eliminated by adding sodium hydroxide. The modified GO contains both S‐ and N‐containing groups (NS‐GO). We found that NS‐GO sheets form good dispersion in water, ethanol, and ethylene glycol. These graphene dispersions can be processed into functionalized graphene film. Besides, it was demonstrated that NS‐GO was proved to be an excellent host matrix for platinum nanoparticles. The developed method paves a new way for graphene modification and its functional nanocomposites.  相似文献   

8.
The reactions between a variety of functionalized alcohols and tris(dimethylsilyl)methane, (HMe2Si)3CH, are described. Alcohols such as ethylene glycol monobutyl ether, ethylene glycol monoethyl ether, triethylene glycol monomethyl ether, 2-chloroethanol, 1-octanol, benzyl alcohol, glycidol, and allyl alcohol were converted in the presence of Karstedt's catalyst into the corresponding tris(alkoxydimethylsilyl)methanes, (ROMe2Si)3CH, in a convenient one-pot operation under aerobic conditions. The appearance of the products coincides with the generation of colloidal Pt(0) species. Moreover, poly(4-chloromethyl)styrene containing tris(dimethylsilyl)methyl groups reacts with benzyl alcohol or 2-chloroethanol in the presence of Karstedt's catalyst to give new macromolecules bearing tris(alkoxydimethylsilyl)methyl groups. The reaction rate is greatly influenced by the concentration of catalyst.  相似文献   

9.
Catalytic activity of Me2SiCp*NtBuMX2/(CPh3)(B(C6F5)4) [MTi, XCH3 (1); MZr, X=iBu (2)] systems in the ethylene/styrene (E/S) feed was examined. Experimental data revealed high activity for the catalytic system (1) for copolymerization ethylene with styrene, whereas the system with enhanced catalytic activity for ethylene homopolymerization (2) was temporarily blocked in the styrene presence yielding, even at high styrene content, homopolyethylene as the final product. Properties of thus obtained polymers were analyzed. Catalytic system (1) occurred very sensitive to S/E ratio in the comonomers feed. The 10‐fold acceleration for ethylene consumption was shown in two experimental sets conducted at S/E = 1.3 ratio, 1 bar, and 7.5 bar ethylene pressure, respectively. The consequent enhancement in S/E ratio resulted in slowing down both ethylene consumption and catalyst deactivation rates. Atactic polystyrene was formed at high styrene content with the catalyst (1). Catalytic system (1) allowed design of products with the highest styrene content (20 mol %) at low ethylene pressure, moderate temperature, and high S/E ratio. The apparent activation energy estimated from the initial rates of ethylene consumption was 54.6 kJ/mol. Analysis of apparent reactivity factors (rE = 9 and rS = 0.04; rE × rS = 0.4) and 13C‐NMR copolymer spectra revealed an alternating tendency of the comonomers for active center incorporation. DSC measurements showed considerable decrease of melting points and crystallinity even for copolymers with low styrene content. The catalyst produced relatively high–molecular weight copolymers (140–150 kg/mol) even at 80°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1083–1093, 1999  相似文献   

10.
α,ω-Dihydroxyl polystyrene was synthesized by the addition of styrene oxide to polystyryl dianion initiated with sodium naphthalene. Diglyme was found to be an unsuitable solvent for the preparation of low molecular weight compounds. Block copolymerization of the α,ω-dihydroxyl polystyrenes (M?n = 2250, 3140, and 6200) with poly(ethylene glycols) (M?n = 404, 1960, and 5650) was pursued by introducing urethane linkages with 4,4′-diphenylmethane diisocyanate. The mechanical, thermal, and viscoelastic properties, solution viscosity, molecular weight distribution, and moisture absorption of the block copolymers obtained were examined. Incorporation of styrene blocks was found to disturb the crystallization and fusion of poly(ethylene glycol) blocks. Films cast from benzene solution were soft and elastic and absorbed up to 5.8% moisture.  相似文献   

11.
Zinc oxide‐decorated superparamagnetic silica attached to graphene oxide (Fe3O4/SiO2/PTS‐GO‐ZnO), as a novel nanocomposite, was designed, and its core‐shell structure was appropriately characterized by different spectroscopy or microscopy methods and thermal techniques as well as measuring of its porosity and magnetic properties. The catalytic activity of Fe3O4/SiO2/PTS‐GO‐ZnO, as a reusable heterogeneous catalyst, was investigated for efficient one‐pot multi‐component synthesis of medicinally important functionalized 2‐amino‐6‐(2‐oxo‐2H‐chromen‐3‐yl)‐4‐arylnicotinonitrile derivatives. The significant features of the present procedure are mild reaction conditions, low loading of the catalyst, high to quantitative yields of the desired products, avoiding the use of toxic heavy metals or solvents, simple isolation and purification of the products, and stability as well as reusability of the catalyst after at least six consecutive runs.  相似文献   

12.
A new heterogeneous catalyst for the epoxidation of olefins was prepared by immobilization of peroxophosphotungstate anions on the surface of clicked magnetite‐graphene oxide as magnetically recoverable support. To prepare the heterogeneous catalyst, the clicked magnetite‐graphene oxide support was prepared by thiolene click reaction of thiol functionalized graphene oxide with vinyl modified magnetite nanoparticles. The tailored support was then modified with aminopropyl groups followed by electrostatic interaction with peroxophosphotungstate anions to achieve the desired heterogeneous catalyst. Characterization of the catalyst was performed by various physicochemical methods which confirmed the successful immobilization of peroxopolyoxotungstate species on the surface of clicked magnetite‐graphene oxide. Catalytic activity of the catalyst revealed its high catalytic activity and selectivity in the epoxidation of various olefins in the presence of H2O2 as green oxidant. This heterogeneous catalyst can be magnetically reused several times without significant loss of activity and selectivity.  相似文献   

13.
Magnetic nanoparticles (MNPs), Fe3O4@SiO2, have been prepared and functionalized by 3-(chloropropyl)trimethoxysilane and then by imidazole to synthesize Fe3O4@SiO2-Im. The functionalized Fe3O4 nanoparticles were used as a support to anchor manganese porphyrin via axial ligation. The prepared catalyst was characterized by elemental analysis, FT-IR spectroscopy, X-ray powder diffraction, UV–vis spectroscopy, and scanning electron microscopy. Application of immobilized manganese porphyrin as a heterogeneous catalyst in oxidation of alkenes and sulfides was explored. To find suitable reaction conditions, effect of different parameters such as solvent and temperature on immobilization process and also various reaction parameters (oxidant, solvent, and time) on oxidation reactions has been investigated. The results showed that the immobilized Mn-porphyrin on functionalized MNPs is an efficient and reusable catalyst for oxidation of substrates.  相似文献   

14.
介孔聚离子液体的可控合成及在常压CO2环加成反应中应用   总被引:1,自引:1,他引:0  
采用刚性的离子液体聚合单体双-(3-乙烯基-1-咪唑)亚甲基双溴盐([C1DVIM]Br),以聚乙二醇(PEG)为溶剂,能够简单快捷制备出高比表面积的介孔聚离子液体.通过调节PEG的分子量大小,即可有效控制所得聚离子液体的孔结构.介孔聚离子液体由于具有典型的聚阳离子骨架、较高的比表面积以及丰富的卤素位,作为非金属多相催化剂在常压下氧化苯乙烯为底物的CO2环加成反应中表现出优异的催化活性和良好的回收稳定性,循环使用5次后催化性能基本保持不变.此外,该催化材料还表现出良好的底物兼容性,可以有效转化很难反应的脂肪类环氧化合物.  相似文献   

15.
A novel Mo(VI) tetradentate Schiff base complex based on two pyrrole‐imine donors was anchored covalently on Fe3O4 nanoparticles and characterized using physicochemical techniques. The catalytic epoxidation process was optimized in terms of the effects of solvent, reaction temperature, kind of oxidant and amount of oxidant and catalyst. Then the novel heterogeneous nanocatalyst was used for the efficient and selective catalytic epoxidation of internal alkenes (cyclohexene, cyclooctene, α‐pinene, indene and trans ‐1,2‐diphenylethene) and terminal alkenes (n ‐heptene, n ‐octene, n ‐dodecene and styrene) using tert ‐butyl hydroperoxide (70% in water) as oxidant in 1,2‐dichloroethane as solvent. The prepared nanocatalyst is very effective for the selective epoxidation of cis ‐cyclooctene with 100% conversion, 100% selectivity and turnover frequency of 1098 h−1 in just 30 min. The magnetic nanocatalyst was easily recovered using an external magnetic field and was used subsequently at least six times without significant decrease in conversion.  相似文献   

16.
Magnetic graphene oxide functionalized with sulfonic acid (Fe3O4‐GO‐SO3H) was used as a new recyclable nanocatalyst for one‐pot synthesis of N‐aryl‐2‐amino‐1,6‐naphthyridine derivatives under solvent free conditions. The catalyst could be easily recovered from the reaction mixture by an external magnet and reused without significant decrease in activity even after 4 runs. This nanocatalyst exhibited better activities to other commercially available sulfonic acid catalysts.  相似文献   

17.
New Schiff base (SB) functionalized graphene oxide (GO) nanosheets containing phosphomolybdic counter‐anion H2PMo12O40¯ (H2PMo) were successfully prepared by grafting of 3‐aminopropyltriethoxysilane (APTS) on GO nanosheets followed by condensation with benzil and finally reaction with phosphomolybdic acid (H3PMo12O40, denoted as H3PMo) and characterized using Fourier transform infrared (FT‐IR) spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), particle size distribution, energy‐dispersive X‐ray (EDX) analysis, EDX elemental mapping, and inductively coupled plasma optical emission spectrometry (ICP‐OES). The prepared new nanomaterial, denoted as GO‐SB‐H2PMo, was shown to be an efficient heterogeneous catalyst in one‐pot, three‐component reaction of β‐naphthol, aldehydes, and dimedone, giving high yields of tetrahydrobenzo[a]xanthene‐11‐ones within short reaction times. The catalyst is readily recovered by simple filtration and can be recycled and reused several times with no significant loss of catalytic activity.  相似文献   

18.
To address the obstacles facing the use of palladium‐based homogeneous and heterogeneous catalysts in C─C cross‐coupling reactions, a novel semi‐heterogeneous support was developed based on hyperbranched poly(ethylene glycol)‐block ‐poly(citric acid)‐functionalized Fe3O4 magnetic nanoparticles (Fe3O4@PCA‐b ‐PEG). Because of the surface modification of the Fe3O4 nanoparticles with amphiphilic and hyperbranched polymers (PCA‐b ‐PEG), these hybrid materials are not only soluble in a wide range of solvents (e.g. water, ethanol and dimethylformamide) but also are able to trap Pd2+ ions via complex formation of free carboxyl groups of the PCA dendrimer with metal ions. The reduction of trapped palladium ions in the dendritic shell of Fe3O4@PCA‐b ‐PEG leads to immobilized palladium nanoparticles. The morphology and structural features of the catalyst were characterized using various microscopic and spectroscopic techniques. The catalyst was effectively used in the palladium‐catalysed Mizoroki–Heck coupling reaction in water as a green solvent. In addition, the catalyst can be easily recovered from the reaction mixture by applying an external magnetic field and reused for more than ten consecutive cycles without much loss in activity, exhibiting an example of a sustainable and green methodology.  相似文献   

19.
A palladium S‐benzylisothiourea complex was anchored on functionalized MCM‐41 (Pd‐SBT@MCM‐41) and applied as efficient and reusable catalyst for the synthesis of 5‐substituted 1H –tetrazoles using [2 + 3] cycloaddition reaction of various organic nitriles with sodium azide (NaN3) in poly(ethylene glycol) (PEG) as green solvent. Also this catalyst was applied as an versatile organometallic catalyst for Suzuki cross‐coupling reaction of aryl halides and phenylboronic acid (PhB(OH)2) or sodium tetraphenyl borate (NaB(Ph)4). This nanocatalyst was characterized by thermal gravimetric analysis (TGA), X‐ray Diffraction (XRD), scanning electron microscopy (SEM), inductively Coupled Plasma (ICP) and N2 adsorption–desorption isotherms techniques. Recovery of the catalyst is easily achieved by centrifugation for several consecutive runs.  相似文献   

20.
杨刚  陈星  王小丽  邢卫红  徐南平 《催化学报》2013,34(7):1326-1332
制备了镍(II)席夫碱配合物官能化的MCM-41多相催化剂MCM-41-Ni.利用X射线粉末衍射、氮气物理吸附脱附、红外光谱、热重、电感耦合等离子体原子发射光谱、元素分析和透射电镜等方法对催化剂进行了表征.以氧气为氧化剂,MCM-41-Ni在催化环氧化苯乙烯的反应中表现出较高的催化活性;苯乙烯的转化率为95.2%,环氧苯乙烷的选择性为66.7%.系统地研究了反应温度、催化剂用量、溶剂以及反应时间对反应性能的影响.催化剂经过4次循环仍然表现出较好的稳定性和催化活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号