首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国化学快报》2022,33(11):4750-4755
Accurate detection of important biomarkers with ultra-low levels in complex biological matrix is one of the frontier scientific issues because of possible signal interference of potential reductive agents and protein molecules. Herein, a self-powered anti-interference photoelectrochemical (PEC) immunosensor was explored for sensitive and specific detection of model target of cardiac troponin I (cTnI). Specifically, a novel ternary heterojunction served as the photocathode to offer a remarkable current output and a zwitterionic peptide was introduced to build a robust antifouling biointerface. CuInS2 (CIS) film with porous network nanostructure was first prepared and then modified in order with ZnIn2S4 (ZIS) nanocrystals and Au nanoparticles to fabricate the Au/ZIS/CIS heterojunction photocathode. After capture cTnI antibody (Ab) was immobilized, the zwitterionic peptide KAEAKAEAPPPPC was then anchored to compete the immunosensor. The elaborated PEC immunosensor exhibited high sensitivity for target cTnI antigen (Ag) detection, with good anti-interference against reductive agents and nonspecific proteins. This integration strategy of heterojunction photocathode with zwitterionic peptide provides a new sight to develop advanced PEC immunosensors applying in practical biosamples.  相似文献   

2.
The number of studies conducted about nonenzymatic electrochemical sensors has increased in recent years due to the development of more stable and robust electrodes using noble metals. One of the key aspects for achieving high sensing performance including detection limit and sensitivity is the design of electrode architecture. Herein, we report a new electrochemical sensing platform featuring ultrathin standing gold nanowires (AuNWs) for nonenzymatic detection of hydrogen peroxide (H2O2). The use of AuNWs resulted in an increased electron transfer efficiency due to the higher active surface area compared to traditional gold film electrodes. This sensor demonstrates good selectivity, reproducibility, a linear range up to 49.5 mM of H2O2 with a sensitivity of 0.185±0.003 mAmM?1cm?2 and a limit of detection of 111 μM. The biological relevance of this sensor was tested in cell culture media to illustrate the performance of the proposed sensing electrode in complex biological media.  相似文献   

3.
Two carboxylate-substituted, fluorescent (Phi = 0.08), water-soluble poly(p-phenyleneethynylene)s (PPE) and a water-soluble model compound were exposed to a series of proteins and bovine serum. While the anionic PPEs do not have any specific binding sites, they form stable complexes with histone, lysozyme, myoglobin, and hemoglobin. The complex formation was evidenced by fluorescence quenching. Bovine serum albumin does not quench the fluorescence of the PPEs but enhances it, probably due to its surfactant character. These results imply that the use of charged conjugated polymers as biosensors, while an attractive proposition, has to take into account strong nonspecific interactions between conjugated polymers and the host of proteins that is found in cells and complex biological fluids.  相似文献   

4.
A high‐performance liquid chromatography method for temozolomide (TMZ) determination in complex biological matrices was developed and validated for application in in vitro, ex vivo and in vivo studies of new nanotechnology‐based systems for TMZ nasal delivery. The method was able to quantify TMZ in nanoemulsions, following cellular uptake, in the porcine nasal mucosa and in mouse plasma and brain. Analyses were performed on a C18 column at 35°C, under UV detection at 330 nm. The mobile phase was methanol–acetic acid 0.5% (30:70, v/v), eluted at an isocratic flow rate of 1.1 mL/min. The method was found to be specific, precise, accurate, robust and linear (0.05 to 5 μg/mL) for TMZ determination in all matrices. No interference of TMZ degradation products was found under various stress conditions such as acidic, alkaline, oxidative, light and thermal exposure, demonstrating stability. The method was applied for the quantification of TMZ in different matrices, i.e. the efficiency of nanoemulsions in vitro in increasing TMZ cellular uptake, ex vivo TMZ permeation and retention in the porcine nasal mucosa tissue, and for in vivo TMZ quantification in mouse brain following intranasal nanoemulsion administration compared with free TMZ.  相似文献   

5.
Reported here is a novel dynamic biointerface based on reversible catechol‐boronate chemistry. Biomimetically designed peptides with a catechol‐containing sequence and a cell‐binding sequence at each end were initially obtained. The mussel‐inspired peptides were then reversibly bound to a phenylboronic acid (PBA) containing polymer‐grafted substrate through sugar‐responsive catechol‐boronate interactions. The resultant biointerface is thus capable of dynamic presentation of the bioactivity (i.e. the cell‐binding sequence) by virtue of changing sugar concentrations in the system (similar to human glycemic volatility). In addition, the sugar‐responsive biointerface enables not only dynamic modulation of stem cell adhesion behaviors but also selective isolation of tumor cells. Considering the highly biomimetic nature and biological stimuli‐responsiveness, this mussel‐inspired dynamic biointerface holds great promise in both fundamental cell biology research and advanced medical applications.  相似文献   

6.
A substantial outstanding challenge in diagnostics and disease monitoring is the ability to assay rapidly and conveniently for protein biomarkers within complex biological media. Bi2Se3, as an important topological insulator (TI) material, was synthesized by a solvothermal method and characterized structurally. Subsequently, the composite of Bi2Se3 and ionic liquid ([BMIm]BF4 IL) was used as a sensing interface to cross-link goat anti-human immunoglobulin G (anti-IgG) via glutaraldehyde (GA) to fabricate an Bi2Se3/IL/GA/anti-IgG-carbon paste electrode (CPE). The nonspecific binding sites were enclosed with bovine serum albumin (BSA) to develop a label-free IgG immunosensor. The result showed that the proposed label-free IgG immunosensor exhibited high specificity with a detection limit of 0.8 ng mL?1 and linear range from 2 to 300, and 300 to 2200 ng mL?1. Besides, the immunosensor exhibited high specificity for IgG detection, acceptable reproducibility, and stability. Thus, the strategy reported here paved a simple way to design a sensitive and cost-effective sensing platform for extension to other disease biomarkers.  相似文献   

7.
We report a general procedure to prepare functional organic thin films for biological assays on oxide surfaces. Silica surfaces were functionalized by self-assembly of an amine-terminated silane film using both vapor- and solution-phase deposition of 3'-aminopropylmethyldiethoxysilane (APMDES). We found that vapor-phase deposition of APMDES under reduced pressure produced the highest quality monolayer films with uniform surface coverage, as determined by atomic force microscopy (AFM), ellipsometry, and contact angle measurements. The amine-terminated films were chemically modified with a mixture of carboxylic acid-terminated poly(ethylene glycol) (PEG) chains of varying functionality. A fraction of the PEG chains (0.1-10 mol %) terminated in biotin, which produced a surface with an affinity toward streptavidin. When used in pseudo-sandwich assays on waveguide platforms for the detection of Bacillus anthracis protective antigen (PA), these functional PEG surfaces significantly reduced nonspecific binding to the waveguide surface while allowing for highly specific binding. Detection of PA was used to validate these films for sensing applications in both buffer and complex media. Ultimately, these results represent a step toward the realization of a robust, reusable, and autonomous biosensor.  相似文献   

8.
Sun T  Qing G  Su B  Jiang L 《Chemical Society reviews》2011,40(5):2909-2921
Controlling the interfacial chemical and physical properties, and thus modulating the behaviours of cells and biomolecules on material surfaces, form an important foundation for the development of high-performance biomaterials and devices. Biological systems in nature exhibit unique features in this aspect. The first one is that the superior properties of natural biomaterials are normally not determined by their bulk properties, but more related to the multi-scale micro- and nanostructures on the surface; the second is that biological systems usually utilize highly specific weak interactions (e.g. hydrogen bonding interaction, hydrophobic interaction, etc.) to solve the problems of biomolecule interactions; the third is that the biomolecules in nature are often chiral molecules and show high preference for one specific enantiomorphous configuration, suggesting a distinctive chiral recognition mechanism in biological systems. These features bring much inspiration to design novel biointerface materials with special functionalities, e.g. structural biointerface materials, smart biointerface materials and chiral biointerface materials. The purpose of this critical review is to give a brief introduction of recent advances in these aspects (90 references).  相似文献   

9.
A new type of potentiometric sensor based on a recently constructed carbon ionic liquid electrode (CILE) is described. Two kinds of ionic liquids, i.e., N‐octylpyridinium hexafluorophosphate (OPFP) and 1‐butyl‐3‐methylimidazoluim hexafluorophosphate (BMFP) were tested as binder for construction of the carbon composite electrode. The characteristics of these electrodes as potentiometric sensors were evaluated and compared with those of the traditional carbon paste electrode (CPE). The results indicate that potentiometric sensors constructed with ionic liquid show an increase in performance in terms of Nernstian slope, selectivity, response time, and response stability compared to CPE.  相似文献   

10.
We report a new tuneable alternating current (ac) electrohydrodynamics (ac‐EHD) force referred to as “nanoshearing” which involves fluid flow generated within a few nanometers of an electrode surface. This force can be externally tuned via manipulating the applied ac‐EHD field strength. The ability to manipulate ac‐EHD induced forces and concomitant fluid micromixing can enhance fluid transport within the capture domain of the channel (e.g., transport of analytes and hence increase target–sensor interactions). This also provides a new capability to preferentially select strongly bound analytes over nonspecifically bound cells and molecules. To demonstrate the utility and versatility of nanoshearing phenomenon to specifically capture cancer cells, we present proof‐of‐concept data in lysed blood using two microfluidic devices containing a long array of asymmetric planar electrode pairs. Under the optimal experimental conditions, we achieved high capture efficiency (e.g., approximately 90 %; % RSD=2, n=3) with a 10‐fold reduction in nonspecific adsorption of non‐target cells for the detection of whole cells expressing Human Epidermal Growth Factor Receptor 2 (HER2). We believe that our ac‐EHD devices and the use of tuneable nanoshearing phenomenon may find relevance in a wide variety of biological and medical applications.  相似文献   

11.
The binding epitope structure of a protein specifically recognized by an antibody provides key information to prevent and treat diseases with therapeutic antibodies and to develop antibody-based diagnostics. Epitope structures of antigens can be effectively identified by the proteolytic epitope excision–mass spectrometry (MS) method, which involves (1) immobilization of monoclonal or polyclonal antibodies, e.g., on N-hydroxysuccinimide-activated sepharose, (2) affinity binding of the antigen followed by limited proteolytic digestion of the immobilized immune complex, and (3) elution and mass spectrometric analysis of the remaining affinity-bound peptide(s). In the epitope analysis of recombinant cellular bovine prion protein (bPrPC) to a monoclonal antibody (mAb3E7), we found that epitope excision experiments resulted in extensive nonspecific binding of bPrP to a standard sepharose matrix employed. Here, we show that the use of amino-modified polystyrene beads with aldehyde functionality is an efficient alternative support for antibody immobilization, suitable for epitope excision–MS, with complete suppression of nonspecific bPrP binding.  相似文献   

12.
《中国化学快报》2023,34(3):107481
In-situ monitoring of neurochemicals is of vital importance for the understanding of brain functions. Microelectrode-based photoelectrochemical (PEC) sensing has emerged as a promising tool for in vivo analysis since it inherits the merits of both optical and electrochemical methods. However, the in-situ excitation of photoactive materials on the photoelectrode in living body is still a challenge because of limited tissue penetration depth of light. To circumvent this problem, we herein developed an implantable optical fiber (OF)-based microelectrode for in vivo PEC analysis. The working electrode was constructed by coating Au film as conducting layer and CdS@ZnO as photoactive material on a micron-sized OF, which was free of the limitation of light penetration in biological tissues. Further decoration of an anti-biofouling layer on the surface made the sensor robust in biosamples. It was successfully applied for monitoring Cu2+ level in three different brain regions in the rat model of cerebral ischemia/reperfusion.  相似文献   

13.
Biointerfaces that limit nonspecific adhesion of serum proteins have been developed by relying solely on cross-linked hydrogels. In addition to being characterized for adhesion of serum proteins, immunoassay sensitivity was also investigated through a sandwich assay for rhIL-1ra. Among the compositions developed, the optimal surface is comprised of pre-cross-linked carboxymethylcellulose (CMC) and polyethyleneimine (PEI) overlaid on a cross-linked layer of poly(ethylene glycol) (PEG) and PEI and employs an anti-IgG Fc specific ligand for oriented antibody immobilization; viscoelastic modeling provides a thickness estimate of 5 nm for the hydrogel alone, rising to 33 nm after the deposition of antibodies. Alternate compositions employing a Protein A ligand and PEG at the exposed surface of the biointerface were disfavored due to an 8-fold increase in serum adhesion and retarded immobilization kinetics, respectively. Through the rapid deposition provided by hydrogels, construction of the entire biointerface, including receptor immobilization, can be completed in 1 h. Based on QCM-D measurements, estimated nonspecific serum adsorption using these compositions is as low as 1.1 ng/mm2. The immunoassay as developed requires 10 min, providing a detection limit of 500 ng/mL rhIL-1ra in 25% human serum using only 5 microg of the secondary antibody.  相似文献   

14.
The design of high‐affinity lectin ligands is critical for enhancing the inherently weak binding affinities of monomeric carbohydrates to their binding proteins. Glyco‐gold nanoparticles (glyco‐AuNPs) are promising multivalent glycan displays that can confer significantly improved functional affinity of glyco‐AuNPs to proteins. Here, AuNPs are functionalized with several different carbohydrates to profile lectin affinities. We demonstrate that AuNPs functionalized with mixed thiolated ligands comprising glycan (70 mol %) and an amphiphilic linker (30 mol %) provide long‐term stability in solutions containing high concentrations of salts and proteins, with no evidence of nonspecific protein adsorption. These highly stable glyco‐AuNPs enable the detection of model plant lectins such as Concanavalin A, wheat germ agglutinin, and Ricinus communis Agglutinin 120, at subnanomolar and low picomolar levels through UV/Vis spectrophotometry and dynamic light scattering, respectively. Moreover, we develop in situ glyco‐AuNPs‐based agglutination on an oriented immobilized antibody microarray, which permits highly sensitive lectin sensing with the naked eye. In addition, this microarray is capable of detecting lectins presented individually, in other environmental settings, or in a mixture of samples. These results indicate that glyconanoparticles represent a versatile and highly sensitive method for detecting and probing the binding of glycan to proteins, with significant implications for the construction of a variety of platforms for the development of glyconanoparticle‐based biosensors.  相似文献   

15.
Monolayers prepared with polar or ionic amino acids with short side chains have a reduced nonspecific adsorption of serum proteins compared to that of hydrophobic amino acids and organic monolayers immobilized on the gold surface of surface plasmon resonance (SPR) biosensors. Proteins contained in biological samples adsorb on most surfaces, which in the case of biosensors causes a nonspecific response that hinders the quantification of biomarkers in these biological samples. To circumvent this problem, self-assembled monolayers (SAM) of N-3-mercaptopropyl-amino acids (3-MPA-amino acids) were prepared from 19 natural amino acids. These SAM were investigated to limit the nonspecific adsorption of proteins contained in biological fluids and to immobilize molecular receptors (i.e., antibodies) that are necessary in the construction of biosensors. SPR and Ge attenuated total reflection (GATR) FTIR spectroscopy were employed to characterize the formation of the amino acid SAMs. Monolayers of 3-MPA-amino acids densely packed on the surface of the SPR biosensors result in a surface concentration of approximately 10 (15) molecules/cm (2). SPR also quantifies the surface concentration of serum proteins nonspecifically adsorbed on 3-MPA-amino acids following the exposure of the biosensor to undiluted bovine serum. The concentration of nonspecifically bound proteins ranged from approximately 400 ng/cm (2) with polar and ionic amino acids to approximately 800 ng/cm (2) with amino acids of increased hydrophobicity. The nonspecific adsorption of serum proteins on the 3-MPA-amino acids increases in the following order: Asp < Asn < Ser < Met < Glu < Gln < Thr < Gly < His < Cys < Arg < Phe < Trp < Val < Pro < Ile < Leu < Ala < Tyr. The analysis of the adsorption and desorption curves for serum proteins on the SPR sensorgram has demonstrated the strong irreversibility of the protein adsorption on each surface. The effective hydrophilicity of the SAMs was measured from the contact angle with a saline buffer and has demonstrated that surfaces minimizing the contact angle with PBS performed better in serum. The antibody for beta-lactamase was immobilized on a 3-MPA-glycine SAM, and beta-lactamase was detected in the nanomolar range. The presence of beta-lactamase is an indicator of antibiotic resistance.  相似文献   

16.
《Analytical letters》2012,45(20):1567-1580
Abstract

The performance characteristics of a copper (II) ion-selective electrode, based on pressed-pellet membrane of ternary CuAgSe, are reported. The sensing material is isostructural with the natural mineral β -eucairite and shows high corrosion resistivity which results in stable and reproducible electrode performance upon ageing. The electrodes exhibit a linear Nernstian response dawn to 5.10?8 M in non buffered medium and down to 10?13M in copper-glycine ion buffer. Data on the electrode stability for a period of two and a half years, on the electrode response time, pH-dependence, selectivity etc. are also presented.  相似文献   

17.
Noh J  Park S  Boo H  Kim HC  Chung TD 《Lab on a chip》2011,11(4):664-671
A novel solid-state reference electrode was developed by combining nanoporous Pt with polyelectrolyte junction. The polyelectrolyte junction was formed in the microchannel connecting the nanoporous Pt and the sample solution, and had layer-by-layer structure of oppositely charged polyelectrolytes. The layer-by-layer polyelectrolyte junction effectively blocked the mass transport of ions and maintains constant pH environments on the surface of the nanoporous Pt. The assembly of the polyelectrolyte junction and the nanoporous Pt, which produced reportedly a stable open-circuit potential in response to constant pH, exhibited outstanding performance as a solid-state reference electrode (e.g., excellent reproducibility of ±4 mV (n = 5), good long term stability of ±1 mV (for 50 h), and independence of solution environments like pH and ionic strength). A working principle of the solid-state reference electrode with layer-by-layer polyelectrolyte junction was suggested in terms of the roles of each layer and the effect of the neighboring layer. As a demonstrative application of the solid-state reference electrode, a miniaturized chip-type solid-state pH sensor comprised of two nanoporous Pt electrodes and a micro-patterned layer-by-layer polyelectrolyte junction was developed. The solid-state pH sensing chip showed reliable pH responses without liquid junction and successfully worked in a variety of buffers, beverages, and biological samples, showing its potential utility for practical applications. In addition, the solid-state pH sensing chip was integrated in a microfluidic system to be utilized for pH monitoring in microfluidic flow.  相似文献   

18.
A novel electrochemical method as a sensitive and convenient technique for the determination of heme proteins based on their interaction with ZnO nanorods was developed. A ZnO nanorod modified glassy carbon electrode (ZnO/GCE) was prepared and the electrochemical behaviors of heme proteins, such as hemoglobin (HB) and cytochrome c (Cyt-c), on this modified electrode have been studied. The results showed that both HB and Cyt-c could be oxidized on the modified electrode and the oxidation currents were linear to the concentrations of the analytes in aqueous solutions. In addition, the results of flow injection analysis (FIA) further suggested the high stability and reproducibility of the ZnO nanorod modified electrode. So this method can be applied to the determination of HB and Cyt-c in biological systems.  相似文献   

19.
In this study, PBI‐based block copolymers were developed and their performance as membranes in high temperature polymer electrolyte membrane fuel cells was evaluated. This type of block copolymer consists of “phosphophilic” PBI and “phosphophobic” non‐PBI segments. The final properties of such block copolymers strongly depended on the length of the individual blocks and their chemical structures. In a systematic approach, a series of various block copolymers was synthesized and characterized both in terms of ex situ properties (e.g., proton conductivity, phosphoric acid uptake, swelling behavior) and in situ fuel cell tests. A very poor membrane‐electrode interface limited the performance of the membrane electrode assemblies, but was remarkably improved in power output, stability, and long‐term durability by treating the electrode interface with a fluorinated PBI derivative. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1831–1843  相似文献   

20.
Matrix-assisted laser desorption ionization time-of-flight mass spectroscopy (MALDI TOFMS) combined with affinity chromatography on immobilized phenylboronic acid agarose gels was used for selective enrichment and detection of specifically modified proteins such as glycated proteins in complex biological samples. Physicochemical grafting of hydrophilic polymers on aluminum surface was developed to reduce nonspecific protein sorption and to create a proper support layer for a three-dimensional affinity hydrogel. Grafted agarose allowed the fixation of three-dimensional agarose hydrogel on the chip surface. Both pinched polymers and hydrogels were effectively derivatized. 3-Aminophenylboronic acid (mPBA) was covalently immobilized as an affinity ligand to achieve specific binding of glycated plasma proteins. Alternatively, the affinity sorbent was immersed into the hydrogel to increase binding capacity. MALDI TOFMS was used to evaluate binding efficiency and molecular mass changes of human serum albumin due to glycation. Glycated proteins were captured directly on the chip with high selectivity and efficacy, and low nonspecific binding. Thus they could easily be characterized by MALDI TOFMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号