首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The current work is focused on optimization, development, and validation of a sensitive and specific reversed-phase high-performance liquid chromatography (RP-HPLC) method for the estimation of rotigotine (RTG) in bulk and nanoformulations. The RP-HPLC method was effectively optimized using the concepts of design of experiments. Critical method variables (CMVs) were screened using Plackett–Burman design. Box–Behnken, a surface response methodology-based design, was further used for the optimization of CMVs with the number of theoretical plates and retention time (min) as responses. The optimized chromatographic conditions for the RP-HPLC method were: acetonitrile proportion: 54% v/v, pH of buffer: 5.0 (10 mM), and flow rate: 0.65 mL/min. The number of theoretical plates and retention time in the study were found to be 11206 and 7.65 min, respectively. The developed method exhibited good linearity (R2 = 0.9995) within a range of 25–600 ng/mL and LOD and LOQ were found to be 9 and 12 ng/mL, respectively. The developed RP-HPLC method was found sensitive, accurate, precise, specific, robust, and stability indicating according to the regulatory guidelines. The validated method was efficiently applied for in vitro dissolution study, ex vivo nasal permeation study, and estimation of drug content of RTG nanocrystals.  相似文献   

2.
For quantitative and other related bioactive studies of hydnocarpin, there is a need to establish an efficient, specific and sensitive analytical method (in vitro and in vivo). In this paper, an efficient HPLC method has been established and validated to analyze hydnocarpin in a nanomicelle formulation for the first time. Various chromatographic conditions for in vitro and in vivo determinations were investigated, with the application examined by pharmacokinetics and tissue distribution studies. The analysis was carried out using an HPLC system with a Waters symmetry C18 column (4.6 × 150 mm, 5 µm) at 25°C with a detecting wavelength of 342 nm. Eluting at a rate of 1.0 mL/min, a 65% methanol and 35% acetic acid solution (0.1%) served as the mobile phase for the in vitro determinations while a 62% methanol and 38% acetic acid solution (0.1%) was used for in vivo analysis with isoliquiritigenin as internal standard. The established in vitro linearity range for hydnocarpin was 0.2–20 µg/mL (R2 = 0.9996), with the biological (in vivo) samples following the same trend. The accuracy of the method was >99% (in vitro) and 92.4–105.3% (in vivo). Also, the precision met the acceptance criterion. These results indicate that the established method exhibited high specificity, accuracy, linearity and precision. Additionally, this efficient HPLC method was applied to pharmacokinetics and tissue distribution studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A simple, rapid and sensitive analytical procedure for the measurement of celecoxib (CXB) levels in skin samples after in vitro penetration studies was developed and validated. In vitro permeability studies in porcine skin were performed for quantification of CXB at different layers of skin, the stratum corneum (SC) and epidermis plus dermis (EP + D) as well as in the acceptor solution (AS) to assess CXB permeation through skin. CXB was quantified by HPLC using a C18 column and UV detection at 251 nm. The mobile phase was methanol–water 72:28 (v/v) and the flow‐rate was 0.8 mL/min. The CXB retention time was 5 min. The assay was linear for CBX in the concentration range of 0.1–3.0 μg/mL in the AS (drug permeated through skin) and 5.0–50.0 μg/mL for drug retained in SC and [EP + D] in vitro. The linear correlation coefficients for the different calibration curves were equal or greater than 0.99. Intra‐ and inter‐assay variabilities were below 8.0%. Extraction of CXB from skin samples showed recoveries higher than 95.0% after 15 min of ultrasonic sound and centrifugation at 2500 rpm for 3 min. The method was considered appropriate for the assay of CXB in skin samples, after in vitro cutaneous penetration studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The objective was to develop a simple HPLC method to quantify exenatide—a 39 amino acid residue incretin mimetic used in diabetes therapy. To date, only non‐validated, sometimes incomplete, gradient methods have been reported in the literature. Isocratic separation was achieved using a C4 column and a mixed solvent system, A–B–C (48:45:7, v/v/v; pH* 5.2), where A represents KH2PO4 (pH 4.5; 0.1 m ) and MeCN (60:40, v/v), B corresponds to NaClO4·H2O (pH 6.0; 0.2 m ) and MeCN (60:40, v/v), and C is water. Exenatide eluted at 3.64 min and the total run time was 6 min. The method was specific and the response was accurate, precise and linear from 0.75 to 25 µg/mL. It was used to quantify exenatide transport across intact and laser‐porated porcine skin in vitro as a function of laser fluence [0 (i.e. intact skin), 9 and 15 J/cm2, respectively]. Although no permeation was observed using intact skin, cumulative exenatide permeation after 8 h through laser porated skin was 9.6 ± 6.5 and 12.4 ± 6.4 µg/cm2 at fluences of 9 and 15 J/cm2, respectively. This is the first validated isocratic method for exenatide quantification and it may be of use in quality control analysis and with other biological matrices. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A simple, isocratic, high‐resolution and prompt HPLC‐PDA method was developed and validated for the simultaneous quantification of prilocaine (PCL) and lidocaine (LCL) hydrochlorides in in vitro buccal iontophoresis‐driven permeation studies. A reversed‐phase C18 column (250 mm x 4.6 mm, 3μm, 110Å) was used for the chromatographic separation. The mobile phase contained acetonitrile: 0.1M sodium phosphate buffer, pH 7.0 (1:1, v/v), plus 0.05% (v/v) diethylamine. The isocratic flow rate was set at 1 mL/min and the detection wavelength was 203 nm. PCL and LCL eluted in 8.9 min and 13 min, respectively, and the system suitability parameters varied within an acceptable range. The method was selective, sensitive, precise, accurate and robust, producing a linear plot at the concentration range of 0.25 to 10 µg/mL. The application of this method was demonstrated by a significant enhancement of the permeation of PCL and LCL with the application of iontophoresis (1 mA/cm2 per 1 h) through isolated porcine esophageal epithelium. The amount of the drug retained in the epithelium also increased with the application of an electrical current. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
There is increasing interest in atorvastatin and curcumin owing to their potential anticancer activity. A new, accurate and sensitive HPLC method was developed, for the first time, to simultaneously quantify atorvastatin and curcumin in mouse plasma and brain, liver, lung and spleen tissues following protein precipitation sample preparation. The chromatographic separation was achieved in 13 min on a C18 column, at 35°C, using a mobile phase composed of acetonitrile–methanol–2% (v/v) acetic acid (37.5:2.5:60, v/v/v) at a flow rate of 1.0 mL/min. The detection of analytes and internal standard was carried out at 247, 425 and 250 nm, respectively. According to international guidelines, the method was shown to be selective, with lower limits of quantification ranging from 10 to 500 ng/mL for curcumin, and from 100 to 600 ng/mL for atorvastatin, linear over a wide concentration range (r2 ≥ 0.9971) and with acceptable accuracy (bias ± 12.29%) and precision (coefficient of variation ≤13.15%). The analytes were reproducibly recovered at a percentage >81.10% and demonstrated to be stable under various experimental conditions in all biological matrices. This method can be easily applied to in vivo biodistribution studies related to the intranasal administration of atorvastatin and curcumin, separately or simultaneously.  相似文献   

7.
A simple, rapid, and sensitive HPLC method based on 9H‐fluoren‐9‐ylmethyl chloroformate derivatization for the quantification of sertraline in rat plasma has been developed, requiring a plasma sample of only 0.1 mL, which was deproteinized and derivatized for 5 min in two single steps. The obtained derivative was stable at room temperature and was determined by HPLC using a fluorescence detector. The analytical column was a C(18) column and the mobile phase was acetonitrile and water (80:20, v/v). Calibration curves were linear in the range of 10–500 ng/mL. The limit of detection was approximately 3 ng/mL, and the lower limit of quantification was established at 10 ng/mL. The bias of the method was lower than 10%, and the within day as well as between day, relative standard deviations were lower than 12%. This analytical method was successfully applied to characterize sertraline pharmacokinetics in rats following intravenous (t1/2 = 213 ± 48 min, Cl = 43.1 ± 8.7 mL/min, Vd = 11560 ± 1861 mL) and oral (Cmax = 156 ± 76 ng/mL, tmax = 63.8 ± 16.3 min) administration of 2 and 5 mg, respectively.  相似文献   

8.
PCK3145 is a synthetic peptide, derived from the Prostate Secreted Protein 94 (PSP94), with promising in vitro and animal in vivo results in prostate cancer. The aim of the present study was to develop and validate a fast and robust ultra‐high‐performance liquid chromatography with ultraviolet detection for the determination of PCK3145 in human plasma which would be suitable for the assessment of PCK3145 stability to proteolytic degradation. Following protein precipitation, chromatographic separation was carried out on an Aeris Peptide C18 column with mobile phase consisting of acetonitrile–water at a flow‐rate of 0.50 mL/min. The calibration curve was linear over the range 0.50–20.00 μg/mL. Intra‐ and inter‐day percentage relative standard deviation and relative error were ≤10%. The limit of detection and the lower limit of quantification were 0.15 and 0.50 μg/mL, respectively. Recovery of PCK3145 from human plasma was ≥96%. The peptide presented high stability in whole blood and in human plasma (>98% intact peptide after 24 h incubation at 37°C in human plasma), which represents a distinctive advantage in the therapeutic use of the compound. This is the first validated UHPLC method for the determination of PCK3145 reported, and it was successfully applied in the study of the proteolytic stability of PCK3145 in human plasma ex vivo. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A simple, sensitive and reliable LC–MS/MS method was developed and validated for the quantification of anemoside B4, a potential antiviral constituent isolated from Pulsatilla chinensis in rat plasma, tissue, bile, urine and feces. All biological samples were prepared by protein precipitation method, and ginsenoside‐Rg1 was chosen as the internal standard (IS). The analyte and IS were separated using a C18 column (2.1 × 50 mm, 1.8 μm) and a mobile phase consisting of 0.1% formic acid in water (v /v) and acetonitrile running at a flow rate of 0.2 mL/min for 5 min. The multiple reaction monitoring transitions were monitored at m /z 1219.5–749.5 for anemoside B4 and 845.4–637.4 for ginsenoside‐Rg1 in electrospray ionization negative mode. The calibration curve was linear in the range of 10–2000 ng/mL for all biological matrices with a lower limit of quantification of 10 ng/mL. The validated method was successfully applied to a pharmacokinetics, tissue distribution and excretion study. These preclinical data will be beneficial for further development of anemoside B4 in future studies.  相似文献   

10.
Phenibut (3-phenyl-4-aminobutyric acid) is a γ-aminobutyric acid mimetic drug, which is used clinically as a mood elevator and tranquilizer. In the present work, a rapid, selective and sensitive liquid chromatography–tandem mass spectrometry method for quantification of phenibut in biological matrices has been developed. The method is based on protein precipitation with acidic acetonitrile followed by isocratic chromatographic separation using acetonitrile–formic acid (0.1% in water; 8:92, v/v) mobile phase on a reversed-phase column. Detection of the analyte was performed by electrospray ionization mass spectrometry in multiple reaction monitoring mode with the precursor-to-product ion transition m/z 180.3 → m/z 117.2. The calibration curve was linear over the concentration range 50–2000 ng/mL. The lower limit of quantification for phenibut in rat brain extracts was 50 ng/mL. Acceptable precision and accuracy were obtained over the whole concentration range. The validated method was successfully applied in a pharmacological study to analyze phenibut concentration in rat brain tissue extract samples. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
A rapid, selective and sensitive method using UPLC‐MS/MS was first developed and validated for quantitative analysis of koumine in rat plasma. A one‐step protein precipitation with methanol was employed as a sample preparation technique. Plasma samples were separated on an Acquity UPLC BEH C18 column (50 × 2.1 mm, i.d. 1.7 µm) with a gradient mobile phase consisting of methanol with 0.1% (v/v) formic acid and water containing 0.1% (v/v) formic acid at a flow rate of 0.3 mL/min. Detection and quantification were performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via positive eletrospray ionization. Good linearity (r > 0.9997) was achieved using weighted (1/x2) least squares linear regression over a concentration range of 0.025–15 µg/mL with a lower limit of quantification of 0.025 µg/mL for koumine. The intra‐ and inter‐ precisions (relative standard deviation) of the assay at all three quality control samples were 5.6–14.1% with an accuracy (relative error) of 5.0–14.0%, which meets the requirements of the US Food and Drug Administration guidance. This developed method was successfully applied to an in vivo pharmacokinetic study in rats after a single intravenous dose of 20 mg/kg koumine. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
13.
A simple, sensitive, selective and precise high‐performance thin‐layer chromatographic method was developed for determination of lipid A (MPLA) adjuvant as a bulk and in solid fat nanoemulsions. Chromatographic separations were performed on thin‐layer chromatography aluminum plates precoated with silica gel 60 F‐254 as stationary phase and chloroform–methanol–ethyl acetate solution (10:2:4, v/v/v) as mobile phase. With this solvent system, compact spots for MPLA at Rf value 0.80 ± 0.02 were obtained. Densitometric analysis of MPLA was carried out in absorbance mode at 357 nm. Linear regression analysis for the calibration plots showed good linear relationship with r = 0.9996 in the concentration range of 20–100 ng/spot. The mean values (±SD) of slope and intercept were found to be 7.355 ± 0.006 and 109.52 ± 0.170, respectively. Limits of detection (LOD) and quantitation (LOQ) were observed at 3.096 and 9.382 ng/spot, respectively.The method was validated for precision, accuracy, robustness and recovery as per the International Conference on Harmonization guidelines. Statistical analysis proved that the developed method for quantification of MPLA as a bulk and in solid fat nanoemulsions is reproducible, selective and economical. This method could be applied for quantitative assay of MPLA in lipid‐based vaccine formulations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A simple and specific bioanalytical method based on reversed‐phase high‐performance liquid chromatography (RP‐HPLC) coupled with ultraviolet detection was developed and validated for the determination of a novel valproic acid arylamide, N‐(2‐hydroxyphenyl)‐2‐propylpentanamide (HO‐AAVPA) in rat hepatic microsomes (a subcellular fraction containing phase I enzymes, especially cytochrome P450). The chromatographic separation was achieved using a reversed‐phase Zorbax SB‐C18 column and a mobile phase of acetic acid in water (0.2% v/v) and acetonitrile (40:60 v/v) with a flow rate of 0.5 mL/min. The calibration curve was linear over the range of 882–7060 ng/mL (r2 = 0.9987), and the lower limit of quantification and the lower limit of determination were found to be 882 and 127.99 ng/mL, respectively. The method was validated with excellent sensitivity, and intra‐day accuracy and precision varied from 93.79 to 93.12%, and from 2.12 to 4.36%, respectively. The inter‐day accuracy and precision ranged from 93.29 to 97.30% and from 0.68 to 3.60%, respectively. The recovery of HO‐AAVPA was measured between 91.36 and 97.98%. The assay was successfully applied to the analysis of kinetic metabolism and pharmacokinetic parameters in vitro by a substrate depletion approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
An efficient HPLC method was developed and validated for the simultaneous determination of ergosterol and 22,23‐dihydroergosterol in Flammulina velutipes sterol‐loaded microemulsions (FVSMs). The different chromatographic conditions for in vitro and in vivo determinations were investigated, with the application examined by tissue distribution. Chromatographic separation was achieved on an Inertsil ODS‐SP (250 × 4.6 mm, 5 µm) analytical column using a mobile phase of 98% methanol (in vitro), and 93% methanol for stomach samples and 96% methanol for other samples (in vivo) at 1.0 mL/min. The sterol content was detected at 282 nm. The established in vitro linearity ranges for ergosterol and 22,23‐dihydroergosterol were 0.58–72.77 µg/mL (r1 = 0.9999) and 0.59–73.25 µg/mL (r2 = 0.9999), respectively, with the biological (in vivo) samples following the same trend. The accuracy of the method was >99% (in vitro) and between 93%–108% (in vivo). The LOQ was 2.15 µg/L for ergosterol and 2.41 µg/L for 22,23‐dihydroergosterol in the in vitro studies. Also, the precisions met the acceptance criterion. These results indicate that the established HPLC method was specific, linear, accurate, precise and sensitive for the separation and simultaneous determination of ergosterol and 22,23‐dihydroergosterol. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Dextromethorphan is used as a probe drug for assessing CYP2D6 and CYP3A4 activity in vivo and in vitro. A SIM GC/MS method without derivatization for the simultaneous determination of dextromethorphan and its metabolites, dextrorphan, 3‐methoxymorphinan and 3‐hydroxymorphinan, in human plasma, urine and in vitro incubation matrix was developed and validated. Calibration curves indicated good linearity with a coefficient of variation (r) better than 0.995. The lower limit of quantitation was found to be 10 ng/mL for all analytes in all matrices. Intra‐day and inter‐day precision for dextromethorphan and its metabolites was better than 9.02 and 9.91%, respectively and accuracy ranged between 91.76 and 106.27%. Recovery for dextromethorphan, its metabolites and internal standard levallorphan was greater than 72.68%. The method has been successfully applied for the in vitro inhibition of metabolism of dextromethorphan by CYP2D6 and CYP3A4 using known inhibitors of CYPs such as quinidine and verapamil. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Costunolide and dehydrocostuslactone are well‐known sesquiterpene lactones contained in many plants used as popular herbs, such as Saussurea lappa and Laurus novocanariensis, and have been considered as potential candidates for the treatment of various types of tumor. In the present work, a sensitive UPLC‐MS/MS for the quantification of costunolide and dehydrocostuslactone in biological matrices has been developed. The method is based on protein precipitation with acetonitrile followed by isocratic ultraperformance liquid chromatographic separation using methanol–formic acid (0.1% in water; 70:30, v/v) mobile phase. Detection was performed by ESI mass spectrometry in MRM mode with the precursor‐to‐product ion transitions m/z 233–187 and m/z 231–185, respectively. The calibration curves of analytes showed good linearity within the established range 0.19–760 ng/mL for costunolide and 0.23–908 ng/mL for dehydrocostuslactone. The lower limits of quantification of costunolide and dehydrocostuslactone were found to be 0.19 and 0.23 ng/mL, respectively. The intra‐day and inter‐day presicions of this method for the entire validation were less than coefficient of variation of 7% and the accuracy was within ±8% (relative error). The mean extraction recoveries were 73.8 and 75.3%, respectively. The method was found to be precise, accurate and specific during the study, and was successfully used to analyze the pharmacokinetics of costunolide and dehydrocostuslactone. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Pizotifen malate is an antihistamine and serotonin inhibitor used in the preventive treatment of migraine and eating disorders. A simple, rapid, accurate and precise high‐performance liquid chromatography (HPLC) method involving ultraviolet detection was validated for the quantitative analysis of pizotifen malate in samples from in vitro transdermal diffusion studies. The method was validated for specificity, linearity, accuracy, precision, limit of detection, limit of quantification and robustness. Drug stability in the solution was also determined under different conditions. Separation was carried out using a 250 × 4.0 mm Kromasil® C18 column at room temperature. The detector response, fitted at 254 nm, was found to be linear in a concentration range between 0.24 and 24.0 µg/mL. The limit of detection was 0.02 µg/mL and the limit of quantification was 0.07 µg/mL. Finally, in vitro transdermal diffusion of pizotifen malate was characterized using the validated HPLC method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A straightforward and common analytical method for α‐tocopherol (αT) determination in various biological samples, including plasma, red blood cells (RBC), tissues and cultured cell lines, was developed and validated, using a reverse phase‐chromatographic method (RP‐HPLC). Even though many chromatographic methods for αT determination have been reported, most of them require readjustment when applied to different types of samples. Thus, an effective and simple method for αT determination in different biological matrices is still necessary, specifically for translational research. This method was applied using a C18 column (250 × 4.6 mm, 5 µm particle size) under isocratic elution with MeOH:ACN:H2O (90:9:1 v/v/v) at a flow rate of 1 mL/min and detected using photodiode array at 293 nm. Linearity (r >0.9997) was observed for standard calibration with inter‐ and intraday variation of standard <4%. Lower limits of detection and quantification for αT in this assay were 0.091 and 0.305 µg/mL respectively. Validation proved the method to be selective, linear, accurate and precise. The method was successfully applied in great variety of biological samples, that is, human and mouse plasma, RBCs, murine tissues and human/mouse/rat cultured cell lines. More importantly, a single protocol of extraction and detection can be applied, making this method very convenient for standardization of different types of samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Catechin is found in several natural sources, as Eugenia dysenterica and Syzygium cumini extracts. Its antioxidant and UV‐protective properties suggest a potential use in cosmetic and dermatological formulations. A simple analytical method capable of giving support to experiments performed along the development of topical formulations containing this natural substance (i.e. drug assay, skin permeation and stability studies), however, is still needed. Thus, this work aimed to develop and validate a selective HPLC method for catechin determination during the development of topical formulations. Separation was achieved using an RP‐C18 column (300 × 3.9 mm; 10 μm), with a mobile phase of methanol–phosphoric acid 0.01 m (15: 85, v/v), a flow rate of 0.8 mL/min, temperature set at 40°C and UV detection at 230 nm. The method was linear in a range from 0.5 to 10.0 μg/mL (r = 0.9998), precise with an overall variation coefficient of 5.5% and accurate with catechin recovery from the skin layers >85%. Additionally, the method was sensitive (limit of detection, 0.109 μg/mL; limit of quantification, 0.342 μg/mL) and selective against plant extracts, skin matrices and formulation interferents, as well as catechin degradation products. It was also robust regarding both methodology parameters and analytical stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号