首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
本文介绍了超常环境力学领域的相关研究背景, 综述了《力学学报》极端力学专题研讨会的学术报告与前沿问题研讨. 以极端力学关注的学科问题为视点, 聚焦深海、深空、超高温、超高速等具有国家重大需求背景的研究方向, 分别介绍了超常环境力学领域的重要成果与最新研究进展. 通过这次会议, 《力学学报》编辑部努力探索一种新的学术交流模式, 能够及时将前沿性、基础性的学术成果传递给相关领域的科研人员, 从而对相关领域的工程技术研发起到支撑作用. 本文还对会议涉及的研究领域进行总结, 期望能促进超常环境力学领域的研究与交流.   相似文献   

2.
船舶结构与水介质耦合动力学在改善船舶运动性能与结构安全性,控制船舶振动噪声与提高水下声隐身性能,进行船舶综合性能的优化设计等一系列工程问题中有广泛的应用需求与发展前景.本文综述了船舶水弹性力学、声弹性力学的理论方法、试验技术与应用技术的国内外研究进展;介绍了在带航速三维水弹性力学理论(Wu 1984)基础上,作者所在课题组近年来发展的船舶三维声弹性理论、计算技术及工程应用的概况.简述了船舶三维声弹性理论的部分应用情况及发展方向.  相似文献   

3.
船舶结构与水介质耦合动力学在改善船舶运动性能与结构安全性,控制船舶振动噪声与提高水下声隐身性能,进行船舶综合性能的优化设计等一系列工程问题中有广泛的应用需求与发展前景.本文综述了船舶水弹性力学、声弹性力学的理论方法、试验技术与应用技术的国内外研究进展;介绍了在带航速三维水弹性力学理论(Wu 1984)基础上,作者所在课题组近年来发展的船舶三维声弹性理论、计算技术及工程应用的概况.简述了船舶三维声弹性理论的部分应用情况及发展方向.  相似文献   

4.
船舶结构与水介质耦合动力学在改善船舶运动性能与结构安全性,控制船舶振动噪声与提高水下声隐身性能,进行船舶综合性能的优化设计等一系列工程问题中有广泛的应用需求与发展前景.本文综述了船舶水弹性力学、声弹性力学的理论方法、试验技术与应用技术的国内外研究进展;介绍了在带航速三维水弹性力学理论(Wu 1984)基础上,作者所在课题组近年来发展的船舶三维声弹性理论、计算技术及工程应用的概况.简述了船舶三维声弹性理论的部分应用情况及发展方向.  相似文献   

5.
汽车工程中的若干力学问题   总被引:1,自引:1,他引:0  
汽车的设计、开发和使用离不开力学.简述汽车的发展历史、主要组成及其性能.介绍汽车工程中的几个关键力学问题,包括汽车轮胎力学、行驶稳定性分析、驱动与阻力、振动与噪声、碰撞力学与车身耐撞性、撞击损伤生物力学、行人保护力学等.展望了汽车工程中需要关注的力学问题.  相似文献   

6.
有效应力原理对土力学理论发展、工程实际问题的解决起到重要作用,它的提出是土力学发展成为一门独立学科的标志.准确理解和使用这一原理,是土力学本科课程教学中的一个关键.基于有效应力原理,从理论角度分析了垂直砂质边坡稳定性、负孔隙水压力问题及“楼歪歪”工程事故等问题的力学本质;其分析方法及思路,能帮助学生加深对有效应力原理的理解和解决工程问题能力,为土力学课程提供教学参考.  相似文献   

7.
基于细观力学理论,提出了横观各向异性复合材料弹性常数的分析模型,并给出了纵向(纤维长度方向) 与横向弹性模量、横截面内剪切模量和泊松比等材料性能参数的理论推导和计算公式. 此方法简洁准确地反映了材料横观各向异性性能,改进了常规细观力学模型,也为工程分析提供了理论依据;同时在复合材料力学课程教学中,有助于深化学生对复合材料细观分析的理解,具有一定的启发性.  相似文献   

8.
在概念力学分析基本方法如动因素法、主响应法和极端形态界定法等基础上发展了延拓分析 的方法, 亦即以分析对象的一个概念力学基本分析模型为出发点, 通过不断延拓的分析过程 来达到解决一系列具有工程实际意义问题的目的. 给出了管道有暖流通过时管壁的内力与变 形分析和多层框架在均匀温降或楼面载荷作用下的弯矩分析等两个实际分析案例. 揭示了如 何在延拓分析过程中结合运用概念力学分析的其他基本方法以取得突破, 并进而确定结构受 力响应基本形态的过程.  相似文献   

9.
混凝土静态力学性能的细观力学方法述评   总被引:2,自引:0,他引:2  
杜修力  金浏 《力学进展》2011,41(4):411-426
混凝土力学特性是大坝、海洋平台等工程结构抗震设计及仿真分析的前提条件之一,也是目前研究的薄弱环节. 混凝土是一种典型的非均质材料,其宏观力学特性由细观组成来决定.本文总结了目前研究混凝土宏观力学特性的细观力学分析方法,细观有限元法及理论分析法; 阐述了界面过渡区(ITZ)对混凝土性能的影响,简单介绍了混凝土界面过渡区问题的研究现状;介绍了作者提出的混凝土宏观力学性能研究的细观单元等效化分析方法.最后对其未来发展的一些方向和有待进一步研究的问题作了总结.   相似文献   

10.
超弹性材料的不稳定性问题   总被引:1,自引:0,他引:1  
任九生  程昌钧 《力学进展》2009,39(5):566-575
超弹性材料是一类性能独特、不可替代且有广泛工程应用的高分子材料,对其独特的材料不稳定性问题的研究极大地推动了连续介质力学有限变形理论和超弹性理论的发展.综述了超弹性材料中的材料不稳定性问题的研究成果和最新进展,包括Rivlin立方块问题、薄壁球壳和薄壁圆筒的内压膨胀问题、圆柱的扭转问题、块体的表面不稳定性问题、空穴的生成、增长和闭合问题等.阐述了这类材料中各类非线性不稳定性问题的特点、问题的求解、主要结果及今后进一步的研究方向等.   相似文献   

11.
《力学快报》2020,10(1):1-7
With the development of cutting-edge sciences and new technologies, we have to consider the size, the density, the hardness, the stiffness and other properties of engineering materials and structures beyond the conventional ranges, as well as their mechanical behavior in extreme environments, such as ultra-conventional temperature, speed, physical and chemical fields, and severe weather, and more effective theories and methods of mechanics are required. This paper first gives the fundamental definition and the scientific connotation of extreme mechanics, then reviews the studies of extreme mechanics from three aspects: the extreme properties, the extreme loads, and the discipline development, as well as major engineering and scientific challenges. The characteristics of extreme mechanics and major challenges in the aspects of mechanical theory,computational methods and experimental techniques are discussed. Prospectivei developments of extreme mechanics are suggested.  相似文献   

12.
Mechanical problems in momentous projects of aerospace engineering   总被引:1,自引:0,他引:1  
近年来, 我国航天重大工程蓬勃发展, 航天工程中新的力学问题不断涌现, 开展航天工程力学问题研究在航天技术的发展中起到举足轻重的作用.随着航天器朝着超高速、深空探测、多功能方向的发展, 其面临的发射和运行环境也更加恶劣, 发射过程中的多场耦合、非线性等问题更加突出. 大阵面、大挠性的航天器对在轨结构展开、模态辨识、刚柔耦合控制提出新的要求, 而高精度、高分辨率的观测需求, 为航天器在轨微振动、热致振动的研究带来了新的课题. 同时, 这一系列的问题也对航天器的地面试验和仿真分析等提出了更高的要求, 在这些领域, 各国学者也积累了一定的成果. 本文概括介绍了近年来航天重大工程中出现的新的力学问题, 从航天器的发射、在轨运行、地面仿真和试验等方面对航天工程中的力学问题进行了综述. 内容主要集中在耦合动力学、空气动力学、多体动力学、结构动力学以及试验力学等方面, 同时提出了工程中力学方面所面临的问题以及下一步的发展方向.  相似文献   

13.
航天重大工程中的力学问题   总被引:2,自引:0,他引:2  
孟光  周徐斌  苗军 《力学进展》2016,(1):267-322
近年来,我国航天重大工程蓬勃发展,航天工程中新的力学问题不断涌现,开展航天工程力学问题研究在航天技术的发展中起到举足轻重的作用。随着航天器朝着超高速、深空探测、多功能方向的发展,其面临的发射和运行环境也更加恶劣,发射过程中的多场耦合、非线性等问题更加突出。大阵面、大挠性的航天器对在轨结构展开、模态辨识、刚柔耦合控制提出新的要求,而高精度、高分辨率的观测需求,为航天器在轨微振动、热致振动的研究带来了新的课题。同时,这一系列的问题也对航天器的地面试验和仿真分析等提出了更高的要求,在这些领域,各国学者也积累了一定的成果。本文概括介绍了近年来航天重大工程中出现的新的力学问题,从航天器的发射、在轨运行、地面仿真和试验等方面对航天工程中的力学问题进行了综述。内容主要集中在耦合动力学、空气动力学、多体动力学、结构动力学以及试验力学等方面,同时提出了工程中力学方面所面临的问题以及下一步的发展方向。  相似文献   

14.
大数据在全世界发展迅猛, 应用成效显著.大数据独特的思维和方法, 为科学研究与探索提供了全新的范式.力学研究中,高时空分辨率、多参数同步观测与高精度、大规模模拟手段的发展,为力学大数据的发展提供了契机,大数据、机器智能方法的应用正呈现快速上升趋势.本文旨在分析大数据思维方法在力学研究中的应用, 及其启示与挑战.首先从大数据资源、大数据科学及大数据技术3个层面分析了大数据的内涵及研究态势,概括了国内外政府及组织机构的大数据发展规划.而后对比分析了力学思维方法与大数据思维方法的特点,指出两者的本质区别在于数据使用方式的不同而带来的范式差异:大数据采用数据驱动模型替代力学中的偏微分方程组以描述问题,在复杂系统的分析、预测中优势显著.回顾了大数据方法在材料性能预测、材料本构建模、湍流建模、结构健康监测及试验力学等方面的最新研究进展,以及动态数据驱动与数字孪生等大数据驱动的建模模拟新范式.总结了大数据在力学研究中应用的3种方式, 即驱动已有模型改进,挖掘复杂隐含的规律, 以及替代已有的理论方法等. 最后,建议以力学研究为主体和牵引, 大数据与力学双驱动,推动大数据与力学交叉形成理论与方法突破、及学科发展新方向.   相似文献   

15.
岩土类颗粒物质宏-细观力学研究进展   总被引:7,自引:1,他引:6  
岩土类颗粒物质在自然界、工程建设以及日常生活中普遍存在,其运动特性的研究在力学界已经开展了几十年.在近20年开展的一系列小尺寸物理实验中,颗粒物质表现出许多新奇现象,人们从物理角度开展了系统研究,在统计力学中,颗粒固体的流体动力学等理论研究以及实验检测技术等方面都取得突破性进展,深刻地揭示了颗粒材料的物理机制,促使力学...  相似文献   

16.
页岩气高效开采的力学问题与挑战   总被引:2,自引:1,他引:2  
页岩气是指赋存于富含有机质泥页岩中以吸附和游离状态为主要存在方式的天然气,中国资源量丰富,地域分布广泛.页岩气开采能缓解我国常规油气产量不足、煤化石燃料引起环境污染等问题,已成为中国绿色能源开发的重要领域.尽管北美页岩气"革命"取得了成功,目前也仅有预期产量5%~15%的采收率.与北美地区相比,中国页岩气埋藏深,赋存条件差,自然丰度低,因此,高效开采面临更多的困难和挑战.近年来,围绕国家重大能源战略需求,瞄准技术发展前沿,学术界和工业界联合对页岩气高效开采的关键科学和技术问题展开研究.本文结合近三年四川、重庆地区的页岩气试验区块遇到的新问题,针对中国未来3 500 m以下深部开采的新挑战,如地质沉积、裂缝发育构造不同、上覆压力增加、水平应力场变化等新问题,介绍和总结了目前中国页岩气高效开采面临的力学科学问题,主要包括多重耦合下的安全优质钻完井力学理论和方法、水力压裂体积改造和多尺度缝网形成机制、多尺度渗流力学特性与解吸附机理等."深部页岩气高效开采"的研究面向国家重大能源需求,科学意义重大,工程背景明确,需要工程力学、石油工程、地球物理、化学工程和环境工程等多学科专家合作,开展理论研究、物理模拟、数值模拟及现场试验等综合应用基础研究,取得高效开采页岩油气理论与技术的突破.学科交叉是研究页岩气高效开采问题、突破技术瓶颈的桥梁,只有力学与石油工程、地球科学等学科实现深度交叉融合,才能更加有效地推动页岩油气等非常规油气资源的开发.  相似文献   

17.
?????????乤?????   总被引:22,自引:1,他引:21  
本文阐述时变力学这一新的研究方向,对其基本课题、特征及力学、数学方法与进展作了较为系统概述,并结合工程实践说明时变固体力学方向研究的重要性与发展前景.  相似文献   

18.
Ubiquitous in nature and finding applications in engineering systems, cellular solids are an increasingly important class of materials. Foams are an important subclass of cellular solids with applications as packing materials and energy absorbers due to their unique properties. A better understanding of foam mechanical properties and their dependence on microstructural details would facilitate manufacture of tailored materials and development of constitutive models for their bulk response. Numerical simulation of these materials, while offering great promise toward furthering understanding, has also served to convincingly demonstrate the inherent complexity and associated modeling challenges.The large range of deformations which foams are subjected to in routine engineering applications is a fundamental source of complication in modeling the details of foam deformation on the scale of foam struts. It requires accurate handling of large material deformations and complex contact mechanics, both well established numerical challenges. A further complication is the replication of complex foam microstructure geometry in numerical simulations. Here various advantages of certain particle methods, in particular their compatibility with the determination of three-dimensional geometry via X-ray microtomography, are exploited to simulate the compression of “real” foam microstructures into densification. With attention paid to representative volume element size, predictions are made regarding bulk response, dynamic effects, and deformed microstructural character, for real polymeric, open-cell foams. These predictions include a negative Poisson's ratio in the stress plateau, and increased difficulty in removing residual porosity during densification.  相似文献   

19.
The world of natural materials and structures provides an abundance of applications in which mechanics is a critical issue for our understanding of functional material properties. In particular, the mechanical properties of biological materials and structures play an important role in virtually all physiological processes and at all scales, from the molecular and nanoscale to the macroscale, linking research fields as diverse as genetics to structural mechanics in an approach referred to as materiomics. Example cases that illustrate the importance of mechanics in biology include mechanical support provided by materials like bone, the facilitation of locomotion capabilities by muscle and tendon, or the protection against environmental impact by materials as the skin or armors. In this article we review recent progress and case studies, relevant for a variety of applications that range from medicine to civil engineering. We demonstrate the importance of fundamental mechanistic insight at multiple time- and length-scales to arrive at a systematic understanding of materials and structures in biology, in the context of both physiological and disease states and for the development of de novo biomaterials. Three particularly intriguing issues that will be discussed here include: First, the capacity of biological systems to turn weakness to strength through the utilization of multiple structural levels within the universality-diversity paradigm. Second, material breakdown in extreme and disease conditions. And third, we review an example where the hierarchical design paradigm found in natural protein materials has been applied in the development of a novel hiomaterial based on amyloid protein.  相似文献   

20.
NANO SCIENCE AND ENGINEERING IN SOLID MECHANICS   总被引:3,自引:2,他引:1  
According to National Science Foundation (NSF) Director A. Bement, ‘Transformative research is... research driven by ideas that stand a reasonable chance of radically changing our understanding of an important existing scientific concept or leading to the creation of a new paradigm or field of science is also characterized by its challenge to current understanding or its pathway to new frontiers.' Nanotechnology is one of such frontiers. It is the creation of new materials, devices and systems at the molecular level--phenomena associated with atomic and molecular interactions strongly influence macroscopic material properties with significantly improved mechanical, optical, chemical, electrical... properties. Former NSF Director Rita Colwell in 2002 declared, ‘nanoscale technology will have an impact equal to the Industrial Revolution'. The transcendent technologies include nanotechnology, microelectronics, information technology and biotechnology as well as the enabling and supporting mechanical and civil infrastructure systems and materials. These technologies are the primary drivers of the twenty first century and the new economy. Mechanics is an essential eleraent in all of the transcendent technologies. Research opportunities, education and challenges in mechanics, including experimental, numerical and analytical methods in nanomechanics, carbon nano-tubes, bio-inspired materials, fuel cells, as well as improved engineering and design of materials are presented and discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号