首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
LetM be the boundary of a strongly pseudoconvex domain in \(\mathbb{C}^n \) ,n≥4 and ω be an open subset inM such that ?ω is the intersection ofM with a flat hypersurface. We establish theL 2 existence theorems of the \(\bar \partial _b - Neumann\) problem on ω. In particular, we prove that the \(\bar \partial _b - Laplacian\) \(\square _b = \bar \partial _b \bar \partial _b^* + \bar \partial _b^* \bar \partial _b \) equipped with a pair of natural boundary conditions, the so-called \(\bar \partial _b - Neumann\) boundary conditions, has closed range when it acts on (0,q) forms, 1≤qn?3. Thus there exists a bounded inverse operator for \(\square _b \) , the \(\bar \partial _b - Neumann\) operatorN b, and we have the following Hodge decomposition theorem on ω for \(\bar \partial _b \bar \partial _b^* N_b \alpha + \bar \partial _b^* \bar \partial _b N_b \alpha \) , for any (0,q) form α withL 2(ω) coefficients. The proof depends on theL p regularity of the tangential Cauchy-Riemann operators \(\bar \partial _b u = \alpha \) on ω?M under the compatibility condition \(\bar \partial _b \alpha = 0\) , where α is a (p, q) form on ω, where 1≤qn?2. The interior regularity ofN b follows from the fact that \(\square _b \) is subelliptic in the interior of ω. The operatorN b induces natural questions on the regularity up to the boundary ?ω. Near the characteristic point of the boundary, certain compatibility conditions will be present. In fact, one can show thatN b is not a compact operator onL 2(ω).  相似文献   

2.
In this paper, we study the integral solution operators for the $\bar \partial $ -equations on pseudoconvex domains. As a generalization of [1] for the $\bar \partial $ -equations on pseudoconvex domains with boundary of classC , we obtain the explicit integral operator solutions of $C_{p,q}^{k + \alpha } $ -form for the $\bar \partial $ -equations on pseudoconvex open sets with boundary ofC k (k≥0) and the sup-norm estimates of which solutions have similar as that [1] in form.  相似文献   

3.
In this paper, we study the global boundary regularity of the \(\bar{\partial }\) - equation on an annulus domain \(\Omega \) between two strictly \(q\) -convex domains with smooth boundaries in \(\mathbb{C }^n\) for some bidegree. To this finish, we first show that the \(\bar{\partial }\) -operator has closed range on \(L^{2}_{r, s}(\Omega )\) and the \(\bar{\partial }\) -Neumann operator exists and is compact on \(L^{2}_{r,s}(\Omega )\) for all \(r\ge 0\) , \(q\le s\le n-q- 1\) . We also prove that the \(\bar{\partial }\) -Neumann operator and the Bergman projection operator are continuous on the Sobolev space \(W^{k}_{r,s}(\Omega )\) , \(k\ge 0\) , \(r\ge 0\) , and \(q\le s\le n-q-1\) . Consequently, the \(L^{2}\) -existence theorem for the \(\bar{\partial }\) -equation on such domain is established. As an application, we obtain a global solution for the \(\bar{\partial }\) equation with Hölder and \(L^p\) -estimates on strictly \(q\) -concave domain with smooth \(\mathcal C ^2\) boundary in \(\mathbb{C }^n\) , by using the local solutions and applying the pushing out method of Kerzman (Commun Pure Appl Math 24:301–380, 1971).  相似文献   

4.
In this paper, we obtain analogues, in the situation of \(\mathfrak{E}\) -extensions, of Magill's theorem on lattices of compactifications. We define an epireflective subcategory of the categoryT 2 of all Hausdorff spaces to be admissive (respectively finitely admissive) if for any \(\mathfrak{E}\) -regular spaceX, every Hausdorff quotient of \(\beta _\mathfrak{E} X\) which is Urysohn on \(\beta _\mathfrak{E} X - X\) (respectively which is finitary on \(\beta _\mathfrak{E} X - X\) ) and which is identity onX, has \(\mathfrak{E}\) . We notice that there are many proper epireflective subcategories ofT 2 containing all compact spaces and which are admissive; there are many such which are not admissive but finitely admissive. We prove that when \(\mathfrak{E}\) is a finitely admissive epireflective subcategory ofT 2, then the lattices of finitary \(\mathfrak{E}\) -extensions of two spacesX andY are isomorphic if and only if \(\beta _\mathfrak{E} X - X\) and \(\beta _\mathfrak{E} Y - Y\) are homeomorphic. Further if \(\mathfrak{E}\) is admissive, then the lattices of Urysohn \(\mathfrak{E}\) -extensions ofX andY are isomorphic if and only if \(\beta _\mathfrak{E} X - X\) and \(\beta _\mathfrak{E} Y - Y\) are homeomorphic.  相似文献   

5.
Using the local Kerzman kernel we prove regularity of solutions of \(\bar \partial \) u=f, where f is a \(\bar \partial \) -closed (0,1)-form in a strongly pseudoconvex domain G in ?N. If f is in Hm,∞, then the solution is in \(\tilde C^{m,\mu } \) forμ<1, that is, the m-th derivatives are in Co,μ/2 and in addition areμ-Hölder continuous on curves “parallel” to the holomorphic tangent bundle \(\tilde T\) ?G. If f is in Cm,α with o<α<1, then the solution is in \(\tilde C^{m,1 + \mu } \) forμ<α, that is, the m-th derivatives are in Co,(1+μ/2, and they have first derivatives “parallel” to \(\tilde T\) ?G lying in \(\tilde C^{o,\mu } \) . We derive the same results for the global solution constructed by Grauert and Lieb, and similar estimates on complex manifolds.  相似文献   

6.
Пусть $$f_n (z) = \exp \{ \lambda _n z\} [1 + \psi _n (z)], n \geqq 1$$ гдеψ n (z) — регулярны в н екоторой односвязно й областиS, λ n — нули целой функц ии экспоненциальног о ростаL(λ) с индикатрис ой ростаh(?), причем $$|L\prime (\lambda _n )| > C(\delta )\exp \{ [h(\varphi _n ) - \varepsilon ]|\lambda _n |\} \varphi _n = \arg \lambda _n , \forall \varepsilon > 0$$ . Предположим, что на лю бом компактеK?S $$|\psi _n (z)|< Aq^{|\lambda |_n } , a< q< 1, n \geqq 1$$ гдеA иq зависит только отK. Обозначим через \(\bar D\) со пряженную диаграмму функцииL(λ), через \(\bar D_\alpha \) — смещение. \(\bar D\) на векторα. Рассмотр им множестваD 1 иD 2 так ие, чтоD 1 иD 2 и их вьшуклая обо лочкаE принадлежатS. Пусть \(\bar D_{\alpha _1 } \subset D_1 , \bar D_{\alpha _2 } \subset D_2 \) Доказывается, что сущ ествует некоторая об ластьG?E такая, что \(\mathop \cup \limits_{\alpha \in [\alpha _1 ,\alpha _2 ]} \bar D_\alpha \subset G\) и дляzG верна оценка $$\sum\limits_{v = 1}^n {|a_v f_v (z)|} \leqq B\max (M_1 ,M_2 ), M_j = \mathop {\max }\limits_{t \in \bar D_j } |\sum\limits_{v = 1}^n {a_v f_v (t)} |$$ , где константаB не зав исит от {a v }.  相似文献   

7.
Let \(A = -\mathrm{div} \,a(\cdot ) \nabla \) be a second order divergence form elliptic operator on \({\mathbb R}^n\) with bounded measurable real-valued coefficients and let \(W\) be a cylindrical Brownian motion in a Hilbert space \(H\) . Our main result implies that the stochastic convolution process $$\begin{aligned} u(t) = \int _0^t e^{-(t-s)A}g(s)\,dW(s), \quad t\geqslant 0, \end{aligned}$$ satisfies, for all \(1\leqslant p<\infty \) , a conical maximal \(L^p\) -regularity estimate $$\begin{aligned} {\mathbb E}\Vert \nabla u \Vert _{ T_2^{p,2}({\mathbb R}_+\times {\mathbb R}^n)}^p \leqslant C_p^p {\mathbb E}\Vert g \Vert _{ T_2^{p,2}({\mathbb R}_+\times {\mathbb R}^n;H)}^p. \end{aligned}$$ Here, \(T_2^{p,2}({\mathbb R}_+\times {\mathbb R}^n)\) and \(T_2^{p,2}({\mathbb R}_+\times {\mathbb R}^n;H)\) are the parabolic tent spaces of real-valued and \(H\) -valued functions, respectively. This contrasts with Krylov’s maximal \(L^p\) -regularity estimate $$\begin{aligned} {\mathbb E}\Vert \nabla u \Vert _{L^p({\mathbb R}_+;L^2({\mathbb R}^n;{\mathbb R}^n))}^p \leqslant C^p {\mathbb E}\Vert g \Vert _{L^p({\mathbb R}_+;L^2({\mathbb R}^n;H))}^p \end{aligned}$$ which is known to hold only for \(2\leqslant p<\infty \) , even when \(A = -\Delta \) and \(H = {\mathbb R}\) . The proof is based on an \(L^2\) -estimate and extrapolation arguments which use the fact that \(A\) satisfies suitable off-diagonal bounds. Our results are applied to obtain conical stochastic maximal \(L^p\) -regularity for a class of nonlinear SPDEs with rough initial data.  相似文献   

8.
An intrinsic definition of Lipschitz classes in terms of vector fields on man-ifolds is provided and it is shown that it is locally equivalent with a more classical definition. A finer result is then proved for strongly pseudo-convex CR manifolds and applications of the theorems are given to smoothness of holomorphic functions and estimates for the \(\bar \partial \) and \(\bar \partial _b \) . equations.  相似文献   

9.
10.
For fixed ?>0, the following inequality holds: $$\left| {\frac{u}{\upsilon } - \wp } \right| > Cexp\left( { - \left( {lnH} \right)^{2 + \varepsilon } } \right)$$ for all numbers β belonging to a field K of finite degree over Q. The constant C>0 does not depend on β. H is the height of β. \(\wp \) (u) and \(\wp \) (v) are algebraic numbers, and u/v is a transcendental number. \(\wp \) (z) is the Weierstrass function with complex multiplication and algebraic invariants. The proof is ineffective.  相似文献   

11.
Let $W: = \exp \left( { - Q} \right)$ , where $Q$ is of smooth polynomial growth at $\infty$ , for example $Q\left( x \right) = \left| x \right|^\beta ,\beta >1$ . We call $W^2 $ a Freud weight. Let $\left\{ {x_{j{\kern 1pt} n} } \right\}_{j = 1}^n $ and $\left\{ {\lambda _{j{\kern 1pt} n} } \right\}_{j = 1}^n $ denote respectively the zeros of the $n$ th orthonormal polynomial $p_n$ for $W^2 $ and the Christoffel numbers of order $n$ . We establish converse quadrature sum inequalities associated with W, such as $$\left\| {\left( {PW} \right)\left( x \right)\left( {1 + \left| x \right|} \right)^r } \right\|_{L_p \left( R \right)} $$ with $C$ independent of $n$ and polynomials P of degree $ < n$ , and suitable restrictions on $r$ , $R$ . We concentrate on the case ${ \geqq 4}$ , as the case ${p < 4}$ was handled earlier. We are able to treat a general class of Freud weights, whereas our earlier treatment dealt essentially with $\left( { - \left| x \right|^\beta } \right),\beta = 2,4,6,....$ Some applications to Lagrange interpolation are presented.  相似文献   

12.
LetD be a simply connected domain, the boundary of which is a closed Jordan curveγ; \(\mathfrak{M} = \left\{ {z_{k, n} } \right\}\) , 0≦kn; n=1, 2, 3, ..., a matrix of interpolation knots, \(\mathfrak{M} \subset \Gamma ; A_c \left( {\bar D} \right)\) the space of the functions that are analytic inD and continuous on \(\bar D; \left\{ {L_n \left( {\mathfrak{M}; f, z} \right)} \right\}\) the sequence of the Lagrange interpolation polynomials. We say that a matrix \(\mathfrak{M}\) satisfies condition (B m ), \(\mathfrak{M}\) ∈(B m ), if for some positive integerm there exist a setB m containingm points and a sequencen p p=1 of integers such that the series \(\mathop \Sigma \limits_{p = 1}^\infty \frac{1}{{n_p }}\) diverges and for all pairsn i ,n j ∈{n p } p=1 the set \(\left( {\bigcap\limits_{k = 0}^{n_i } {z_{k, n_i } } } \right)\bigcap {\left( {\bigcup\limits_{k = 0}^{n_j } {z_{k, n_j } } } \right)} \) is contained inB m . The main result reads as follows. {Let D=z: ¦z¦ \(\Gamma = \partial \bar D\) and let the matrix \(\mathfrak{M} \subset \Gamma \) satisfy condition (Bm). Then there exists a function \(f \in A_c \left( {\bar D} \right)\) such that the relation $$\mathop {\lim \sup }\limits_{n \to \infty } \left| {L_n \left( {\mathfrak{M}, f, z} \right)} \right| = \infty $$ holds almost everywhere on γ.  相似文献   

13.
The CF table     
Letf be a continuous function on the circle ¦z¦=1. We present a theory of the (untruncated) “Carathéodory-Fejér (CF) table” of best supremumnorm approximants tof in the classes \(\tilde R_{mn} \) of functions $${{\tilde r(z) = \sum\limits_{k = - \infty }^m {a_k z^k } } \mathord{\left/ {\vphantom {{\tilde r(z) = \sum\limits_{k = - \infty }^m {a_k z^k } } {\sum\limits_{k = 0}^n {b_k } z^k ,}}} \right. \kern-\nulldelimiterspace} {\sum\limits_{k = 0}^n {b_k } z^k ,}}$$ , where the series converges in 1< ¦z¦ <∞. (The casem=n is also associated with the names Adamjan, Arov, and Krein.) Our central result is an equioscillation-type characterization: \(\tilde r \in \tilde R_{mn} \) is the unique CF approximant \(\tilde r^* \) tof if and only if \(f - \tilde r\) has constant modulus and winding numberω≥ m+ n+1?δ on ¦z¦=1, whereδ is the “defect” of \(\tilde r\) . If the Fourier series off converges absolutely, then \(\tilde r^* \) is continuous on ¦z¦=1, andω can be defined in the usual way. For general continuousf, \(\tilde r^* \) may be discontinuous, andω is defined by a radial limit. The characterization theorem implies that the CF table breaks into square blocks of repeated entries, just as in Chebyshev, Padé, and formal Chebyshev-Padé approximation. We state a generalization of these results for weighted CF approximation on a Jordan region, and also show that the CF operator \(K:f \mapsto \tilde r^* \) is continuous atf if and only if (m, n) lies in the upper-right or lower-left corner of its square block.  相似文献   

14.
Let $I^d $ be the d‐dimensional cube, $I^d = [0,1]^d $ , and let $F \ni f \mapsto Sf \in L_\infty (I^d ) $ be a linear operator acting on the Sobolev space F, where Fis either $$$$ or $$$$ where $$\left\| f \right\|_F = \sum\limits_{\left| m \right| = r} {\mathop {{\text{esssup}}}\limits_{x \in I^d } \left| {\frac{{\partial f^{\left| m \right|} }} {{\partial x_1^{m_1 } \partial x_2^{m_2 } \cdot \cdot \cdot \partial x_d^{m_d } }}(x)} \right|.} $$ We assume that the problem elements fsatisfy the condition $\sum\nolimits_{\left| m \right| = r} {{\text{esssup}}} _{x \in I^d } \left| {f^{(m)} (x)} \right| \leqslant 1 $ and that Sis continuous with respect to the supremum norm. We study sensitivity of optimal recovery of Sfrom inexact samples of ftaken at npoints forming a uniform grid on $I^d $ . We assume that the inaccuracy in reading the sample vector is measured in the pth norm and bounded by a nonnegative number δ. The sensitivity is defined by the difference between the optimal errors corresponding to the exact and perturbed readings, respectively. Our main result is that this difference is bounded by $\mathcal{A}\delta $ , where $\mathcal{A} $ is a positive constant independent of the number of samples. This indicates that the curse of dimension, which badly affects the optimal errors, does not extend to sensitivity.  相似文献   

15.
We discuss the spectrum of a symmetric elliptic differential operator A with domain \(\mathop {H^m }\limits^o (\Omega ) \cap H^{2m} (\Omega )\) in regions Ω with unbounded boundary \(\dot \Omega \) , where are \(\bar \Omega \) uniformely of class C2m and on \(\dot \Omega \) the normal condition x·ν(x)≦μ for sufficient small positiveμ. We prove the A-priori-estimate \(\parallel u\parallel _{m,\Omega } \leqq c\parallel (l + r) (A - k)u\parallel _{o,\Omega } \) and show for all k>k, k≧0 suitable, there are no eigenvalues of A and by characterizing weighted Sobolev spaces with negative norm the existence of solutions \((l + r)_2 ^{ - 1} u \in \mathop H\limits^0{^m} (\Omega ) \cap H^{2m} (\Omega )\) of the equation (A?k)u=f, (1+r)f∈L2(Ω).  相似文献   

16.
For each point ξ in a CR manifold M of codimension greater than 1, the CR structure of M can be approximated by the CR structure of a nilpotent Lie group Gξ of step two near ξ. Gξ varies with ξ. $\square _b $ and $\bar \partial _b $ on M can be approximated by $\square _b $ and $\bar \partial _b $ on the nilpotent Lie group Gξ We can construct the parametrix of $\square _b $ on M by using the parametrix of $\square _b $ on nilpotent group of step two, and define a quasidistance on M by the approximation. The regularity of $\square _b $ and $\bar \partial _b $ follows from the Harmonic analysis on M.  相似文献   

17.
18.
In this paper some new results on positive \(\partial \bar \partial - closed\) currents are applied to modifications \(f:\bar M \to M\) . The main result in this topic is that every smooth proper modification of a compact Kähler manifoldM is balanced. Moreover, under suitable hypotheses on the map, the Kähler degrees of \(\bar M\) corresponds to homological properties of the exceptional set of the modification. More examples ofp-Kähler manifolds are discussed in the last section of the paper.  相似文献   

19.
We introduce the notion of $\bar \Psi $ -integrals of 2π-periodic summable functions f, f ε L, on the basis of which the space L is decomposed into subsets (classes) $L^{\bar \Psi } $ . We obtain integral representations of deviations of the trigonometric polynomials U n(f;x;Λ) generated by a given Λ-method for summing the Fourier series of functions $f{\text{ }}\varepsilon {\text{ }}L^{\bar \Psi } $ . On the basis of these representations, the rate of convergence of the Fourier series is studied for functions belonging to the sets $L^{\bar \Psi } $ in uniform and integral metrics. Within the framework of this approach, we find, in particular, asymptotic equalities for upper bounds of deviations of the Fourier sums on the sets $L^{\bar \Psi } $ , which give solutions of the Kolmogorov-Nikol'skii problem. We also obtain an analog of the well-known Lebesgue inequality.  相似文献   

20.
В статье рассматрива ются анизотропные пр остранства Бесова \(B_p^{\bar s} \) и Соболева \(W_p^{\bar s} \) н а плоскости и на единич ном круге, где 1<р<∞ и \(1< p< \infty \) И \(\bar s = (s_1 ,s_2 )\) . Основная цель состои т в доказательстве анизотропных нераве нств Харди и в изучени и соответствующих про странств \(\dot B_p^{\bar s} \) и \(\dot W_p^{\bar s} \) типа Бесова—Соболе ва. Эти результаты буд ут использованы во втор ой работе для точного описания следов упом янутых пространств н а плоских кривых.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号