首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
以丙烯酰胺(AM)、丙烯酸(AA)和丙烯酸辛基酚聚氧乙烯醚酯(C8PhEO10Ac)为单体,采用自由基交联共聚法合成了具有pH敏感性的P(AM-AA-co-C8PhEO10Ac)水凝胶.研究了pH、单体配比对凝胶溶胀性能、溶胀动力学和退溶胀动力学的影响.初步探讨了模拟胃液(pH=1.4)、肠液(pH=7.4)中水凝胶对茶碱的控释情况.结果表明:凝胶具有高溶胀、退溶胀速率和良好的pH敏感性等特征;水凝胶的扩散行为在pH=7.4的缓冲溶液中为非Fickian扩散模式;载药凝胶在模拟肠液中对药物的累积释放率明显大于胃液中的累积释放率,其中n(C8PhEO10Ac)∶n(AM)∶n(AA)为1∶20∶30的载药水凝胶对茶碱的累积释放率最大.  相似文献   

2.
用三甘醇(TG)和柠檬酸(CA)通过熔融缩聚的方法得到了一种网络型阴离子聚醚酯—聚三甘醇柠檬酸酯(PTGC).用FT-IR对预聚物的结构进行了初步表征,用ATIR、DSC、XRD对材料的结构进行了表征.考察了PTGC在不同pH值缓冲溶液中的溶胀行为.实验结果表明,PTGC的溶胀度随着柠檬酸的比例的增加先减小后增大.在碱性介质中PTGC的溶胀度显著增大,而在酸性介质中溶胀度显著减小,在pH<3的缓冲液中的溶胀度达到最小值.在pH 7.4的人工肠液和pH 1.0的人工胃液中PTGC的溶胀-收缩具有可逆性,显示出良好的pH敏感性,有望作为pH敏感口服结肠定位给药系统药物载体.  相似文献   

3.
通过两步反应合成了水溶性的N-(2-磺酸基苯甲基)壳聚糖(SBCS), 用IR, 1H NMR和UV-Vis谱对产物的结构进行了表征. 用胶体滴定法测定了N上2-磺酸基苯甲基的取代度. 以戊二醛为交联剂制备了N-(2-磺酸基苯甲基)壳聚糖水凝胶(SBCSG), 考察了凝胶在不同pH值缓冲溶液中的溶胀行为. 实验结果表明, SBCSG溶胀度随着凝胶交联度的增大而减小. 在碱性介质中SBCSG的溶胀度显著增大, 而在酸性介质中溶胀度显著减小, 在pH= 5.0缓冲液中的溶胀度达到最小值. SBCSG在碱性介质中的溶胀度随着侧链N上2-磺酸基苯甲基取代度增大而增大. 在pH=7.4的人工肠液和pH=1.0的人工胃液中SBCSG的溶胀-收缩具有可逆性, 显示出良好的pH敏感性. 有望作为pH敏感口服结肠定位给药系统药物载体.  相似文献   

4.
采用同步互穿网络方法制备丝胶蛋白(SS)/聚甲基丙烯酸(PMAA)为组分的互穿网络(IPN)水凝胶. 研究了互穿网络水凝胶对介质pH的刺激响应性能. 结果表明, IPN水凝胶具有强烈的pH刺激响应性能. 在pH=9.2的缓冲溶液中, -COOH解离成 -COO-, 渗透压与网络之间的静电排斥作用导致IPN的溶胀度增大; 当pH减小时, 溶胀度随之减小. IPN水凝胶具有快速退溶胀速率及可逆溶胀-收缩性能.  相似文献   

5.
两性pH敏感凝胶同时拥有可电离的酸性基团和碱性基团,与普通凝胶相比,它具有更好的溶胀特性和生物相容性,从而被广泛应用在生物医学、药物输送系统、微流体控制等领域。因其独特的pH敏感特性和非线性溶胀行为,目前还缺乏用于描述两性pH敏感凝胶的有限元方法。据此本文采用修正过的两性pH敏感凝胶平衡溶胀理论,发展了能够描述凝胶溶胀力学行为的有限元计算方法,计算两性pH敏感凝胶在均匀溶胀和非均匀溶胀下的力学行为。结论显示,该有限元方法可以很好地与凝胶溶胀理论的(半)解析解拟合,既可以为生物体中某些关键指标提供重要参数和力学上的理论参考,也可为以聚合物凝胶为材料的微流体控制阀的设计提供重要参考。  相似文献   

6.
严俊  周春才 《应用化学》2000,17(1):75-0
共聚物;pH敏感阳离子聚电解质凝胶的溶胀和释药性能  相似文献   

7.
通过在聚L-谷氨酸侧链部分接枝甲基丙烯酸2-羟乙酯得到含有双键的聚(L-谷氨酸),将其与丙烯酸共聚得到由聚(L-谷氨酸)侧链接枝并交联聚丙烯酸的pH敏感水凝胶.研究水凝胶在不同pH的缓冲溶液中的溶胀性、溶胀动力学,并通过SEM观察水凝胶的微观结构.结果表明,水凝胶在低pH环境下的溶胀率明显低于高pH环境中的溶胀率,不同...  相似文献   

8.
采用接枝共聚合成了羧甲基纤维素钠、丙烯酸与N,N′-亚甲基双丙烯酰胺的交联凝胶, 研究了这类凝胶在不同pH值的缓冲溶液中的溶胀行为, 发现在酸性介质中凝胶的溶胀动力学行为表现出过溶胀平衡特性(overshooting effect), 即凝胶先发生溶胀到最大值, 然后再逐渐消溶胀到平衡. 这种现象可归因于凝胶溶胀过程中羧基之间通过氢键所产生的协同物理交联. 较之凝胶的组成, 缓冲溶液的pH值对过溶胀平衡现象的影响更为显著. 前者是因为凝胶羧基的总摩尔分数并不随两组分结构单元摩尔数的改变而改变, 羧基之间通过氢键形成的物理交联程度在交联剂摩尔分数接近的条件下变化不大; 后者是由于溶液的pH值显著影响凝胶羧基的质子化程度, 进而影响羧基之间通过氢键形成的物理交联程度. 凝胶在酸性介质中的溶胀过程符合E. Díez-Peña等提出的溶胀动力学定量模型, 理论曲线与实验数据有较好的相关性. 凝胶在pH≥5.0的缓冲溶液中的溶胀不产生过溶胀平衡现象, 这一现象归因于完全离子化的羧基之间不能形成物理交联. 凝胶的溶胀过程遵循Schott二级溶胀动力学.  相似文献   

9.
耿同谋  张霞 《应用化学》2014,31(2):140-146
以二烯丙基胺和1-溴代十六烷为原料合成了疏水单体N,N-二烯丙基正十六烷胺(DiAC16),用FTIR、1H NMR 和元素分析对其进行了表征。 以2-羟基甲基丙烯酸乙酯(HEMA)、丙烯酸(AA)和N,N-二烯丙基正十六烷胺为共聚单体,N,N′-亚甲基双丙烯酰胺(BIS)为交联剂,十二烷基硫酸钠(SDS)为表面活性剂,过硫酸铵-四甲基乙二胺(TMEDA)为引发体系,制得的疏水改性智能水凝胶P(HEMA-NaAA-DiAC16)具有pH敏感特性。 研究了DiAC16、NaAA、BIS用量及pH值和离子强度等因素对水凝胶P(HEMA-NaAA-DiAC16)溶胀性能的影响。 结果表明,凝胶在水中的平衡溶胀率(为78.9~163.91),随DiAC16、BIS用量的增加和NaAA用量的减少而减少,n值(一般在0.5~1.0之间)随DiAC16、NaAA和BIS用量的增加而增加,为非Fickian扩散。 水凝胶的吸水溶胀是放热过程,ΔHm在-2.09~-3.64 kJ/mol,ΔHm的绝对值随DiAC16用量的减少、NaAA用量和BIS用量的增加而增大,聚合物与水的亲和力逐渐增强。 随离子强度的增强,平衡溶胀率下降。  相似文献   

10.
药物在pH敏感聚甲基丙烯酸-poloxamer水凝胶中的扩散行为   总被引:10,自引:0,他引:10  
平衡溶胀率;药物扩散;药物在pH敏感聚甲基丙烯酸-poloxamer水凝胶中的扩散行为  相似文献   

11.
Based on a biodegradable cross-linker, acryloyloxyethylaminopolysuccinimide (AEA-PSI), a series of looser cross-linked poly(N-isopropylacrylamide-co-acrylic acid) [P(NIPAAm-co-AAc)] hydrogels were prepared, and their water content, swelling/deswelling kinetics, and the morphology of the gels were investigated. The swelling behaviors of AEA-PSI-cross-linked P(NIPAAm/AAc) hydrogels were investigated in Dulbecco’s phosphate-buffered saline (pH = 7.4), in the distilled water, and in the simulated gastric fluids (pH = 1.2), respectively. The water contents of the hydrogels were controlled by the monomer molar ratio of NIPAAm/AAc, swelling media, and the temperature. In the swelling kinetics, all the dried hydrogels exhibited fast swelling behavior, and the swelling ratios were influenced significantly by the amounts of AEA-PSI and AAc content. The deswelling kinetics of the hydrogel were independent of the content of AAc and cross-linker. Lastly, the morphology of the hydrogels was estimated by the field scan electron microscopy.  相似文献   

12.
A series of macroporous poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAm-AA) hydrogels with different composition were synthesized by free-radical copolymerization in the presence of silica particles as a pore generating agent. The equilibrium swelling ratio, half swelling time and dynamic swelling kinetics of the copolymers previously soaked in different acidic buffer solutions were investigated at pH 7 at 25°C. Experimental results revealed that the swelling rate of the macroporous hydrogels was greatly increased compared to conventional hydrogels due to existence of the macroporous structures. It was found that the swelling history of previously putting in acidic solutions copolymers had strong influence on their dynamic swelling kinetics especially for the samples ranging in composition between 30 and 70 mol % of NIPAAm, whereas the swelling history had little influence on the equilibrium swelling ratio of copolymers. The swelling pattern exhibits sigmoid swelling curves. This is explained by an autocatalytic mechanism. The hydrogen bonding dissociation plays an important role in the dynamic swelling behavior.  相似文献   

13.

Hydrogels based essentially on N‐isopropylacrylamide (NIPAAm) and different ratios of ethylene glycol dimethacrylate (EGDMA) monomer were synthesized by gamma radiation copolymerization. The thermal decomposition behavior of NIPAAm/EGDMA hydrogels was determined by thermogravimetric analysis (TGA). The effect of temperature and pH on the swelling behavior was also studied. The results showed that the ratio of EGDMA in the comonomer feeding solution has a great effect on the yield product, gel fraction and water content in the final hydrogel. In this regard, it was observed that the increase of EGDMA ratio decreased these properties. The TGA study showed that all the compositions of NIPAAm/EGDMA hydrogels displayed higher thermal stability than the hydrogel based on pure PNIPAAm hydrogel. The swelling kinetics in water showed that pure PNIPAAm and NIPAAm/EGDMA hydrogels reached equilibrium after 6 h. However, NIPAAm/EGDMA hydrogels show swelling in water lower than pure PNIPAAm. The results showed that the swelling character of pure PNIPAAm and NIPAAm/EGDMA hydrogels was affected by the change in temperature within the temperature range 25–40°C, and showed a reversible change in swelling in the pH range 4–7 depending on composition.  相似文献   

14.
In this work, a hemicellulose-containing hydrogel was synthesized. As the first step, a temperature- and pH-sensitive copolymer was synthesized from itaconic acid and N-isopropylacrylamide (NIPAAm). Then the hydrogel was prepared by reacting the copolymer with acylated hemicellulose and polyvinyl alcohol. The morphology, compressive strength, thermal stability, swelling/deswelling behavior, drug-release behavior performances of the hydrogels were investigated. The lower critical solution temperature of the hydrogels varied in 34–44°C when the NIPAAm and itaconic acid mass ratios ranged in 100/0–90/10. Both temperature and pH had a significant influence on equilibrium swelling ratio of hydrogels. The equilibrium swelling ratio increased with pH, but decreased with temperature. Cytocompatibility assay demonstrated that this hemicellulose-containing hydrogel was biocompatible. The release process of salicylic acid suggested that this hydrogel had a potential use in controlled drug release.  相似文献   

15.
Semi‐interpenetrating polymer networks (semi‐IPNs) composed of chitosan and polyacrylamide (PAAm) hydrogels have been prepared, and the effect of changing pH, temperature, ionic concentration, and applied electric fields on the swelling of the hydrogels was investigated. The swelling kinetics increased rapidly, reaching equilibrium within 60 min. The semi‐IPN hydrogels exhibited a relatively high swelling ratios of 385%–569% at T=25°C. The swelling ratio increased with decreasing pH below pH=7 due to the dissociation of ionic bonds. The swelling ratio of the semi‐IPN hydrogels was pH, ionic concentration, temperature, and electric field dependent. Differential scanning calorimetry (DSC) was used to determine the volume of free water in the semi‐IPN hydrogels, which was found to increase with increasing PAAm content.  相似文献   

16.
Poly [N‐isopropylacrylamide (NIPAAm)–chitosan] crosslinked copolymer particles were synthesized by soapless emulsion copolymerization of NIPAAm and chitosan. An anionic initiator [ammonium persulfate (APS)] and a cationic initiator [2,2′‐azobis(2‐methylpropionamidine)dihydrochloride (AIBA)] were used to initiate the reaction of copolymerization. The chitosan–NIPAAm copolymer synthesized by using APS as the initiator showed a homogeneous morphology and exhibited the characteristic of a lower critical solution temperature (LCST). The copolymer synthesized by using AIBA as an initiator showed a core–shell morphology, and the characteristic of LCST was insignificant. The LCST of the chitosan–NIPAAm copolymer depended on the morphology of the copolymer particles. In addition, the chitosan–NIPAAm copolymer particles were processed to form copolymer disks. Then, the effect of various variables such as the chitosan/NIPAAm weight ratio, the concentration of crosslinking agent, and the pH values on the swelling ratio of chitosan–NIPAAm copolymer disks were investigated. Furthermore, caffeine was used as the model drug to study the characteristics of drug loading of the chitosan–NIPAAm copolymer disks. Variables such as the chitosan/NIPAAm weight ratio and the concentration of the crosslinking agent significantly influenced the behavior of caffeine loading. Two factors (pore size and swelling ratio) affected the behavior of caffeine release from the chitosan–NIPAAm copolymer disks. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3029–3037, 2004  相似文献   

17.
Based on a biodegradable cross-linker, N-maleyl chitosan (N-MACH), a series of Poly(N-isopropylacrylamide) (PNIPAAm) and Poly(N-isopropylacrylamide-co-acrylamide) [P(NIPAAm-co-Am)] hydrogels were prepared, and their lower critical solution temperature (LCST), swelling kinetics, equilibrium swelling ratio in NaCl solution, and enzymatic degradation behavior in simulated gastric fluids (SGF) were discussed. The LCST did not change with different cross-linker contents. By altering the NIPAAm/Am molar ratio of P(NIPAAm-co-Am) hydrogels, the LCST could be increased to 39°C. The LCST of the hydrogel was significantly influenced by the monomer ratio of the NIPAAm/Am but not by the cross-linker content. In the swelling kinetics, all the dry hydrogels exhibited fast swelling behavior, and the swelling ratios were influenced by the cross-linker content and NIPAAm/Am molar ratios. Equilibrium swelling ratio of all the hydrogels decreased with increasing NaCl solution concentration. In enzymatic degradation tests, the weight loss of hydrogels was dependent on the cross-linker contents and the enzyme concentration.   相似文献   

18.
Super water absorbent polymer hydrogels were synthesized by frontal polymerization. These materials were obtained by copolymerizing N‐isopropyl acrylamide (NIPAAm) and 3‐sulfopropyl acrylate potassium salt (SPAK) in the presence of N,N′‐methylene‐bis‐acrylamide as a crosslinker. It was found that their swelling behavior in water can be easily tuned by using either the appropriate monomer ratio or the amount of the crosslinker used. Namely, the swelling ratio was found to range from about 1000% for the NIPAAm homopolymer in the presence of 5.0 mol % of crosslinker, up to 35,000% for the sample containing 87.5 mol % of SPAK and 1.0 mol % of crosslinker. The affinity toward water was also confirmed by contact angle analysis. Moreover, the obtained hydrogels exhibit a thermoresponsive behavior, with a lower critical solution temperature of about 28–30 °C. This value is close to that of poly(NIPAAm) but with a swelling capability that dramatically increases as the amount of SPAK increases. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
The drug uptake and release of anticancer drug from N-isopropylacrylamide/itaconic acid copolymeric hydrogels containing 0–3 mol% of itaconic acid irradiated at 48 kGy have been investigated. 5-Fluorouracil (5-FU) is used as a model anticancer drug. The effect of 5-FU solution on swelling characteristics of PNIPAAm and P(NIPAAm/IA) copolymeric hydrogels have also been studied. The percent swelling, equilibrium swelling, equilibrium water/5-FU content and diffusion constant values are evaluated for poly(N-isopropylacrylamide) (PNIPAAm) and poly(N-isopropylacrylamide/itaconic) (P(NIPAAm/IA)) hydrogels at 130 ppm of 5-FU solution at room temperature. Diffusion of 5-FU solution into the hydrogels has been found to be the non-Fickian type. Finally, the kinetics of drug release from the hydrogels are examined.  相似文献   

20.
Summary : Injectable biodegradable hydrogels have been developed to determine the efficacy of biomaterials for the treatment of periodontitis through control delivery of bone-healing bioactives. The hydrogels were prepared from the PEG-ylated macromer of Boltorn™ H20 (BH20) and an acrylated triblock copolymer of polylactide-polyethylene glycol (2k)-polylactide (PLA) in various molar ratios using ammonium persulfate and sodium ascorbate as a free radical initiating system. Preliminary investigations involving the synthesis of PLA hydrogels with different PLLA block lengths were studied in order to determine the swelling ratios and degradation rates of the biodegradable component of the hydrogels prior to copolymerization with BH20. The swelling and degradation studies of PLA with PEG diacrylate (FW 700) hydrogels were established in phosphate buffered saline (PBS) at 37 °C, pH 7.4 and in water (pH ∼5.5). They have been shown to have low swelling ratios (Qmax = 4.4 to 3.6) and degradation times of 20–30 days. The swelling and degradation parameters were found to be dependent on the molar ratio of the PEG diacrylate to PLA in the copolymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号