首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, we consider the existence of positive solutions to the following Singular Semipositone m-Point n-order Boundary Value Problems (SBVP): $$\left\{\begin{array}{l@{\quad}l}(-1)^{(n-k)}x^{(n)}(t)=\lambda f(t,x(t)),&0<t<1,\\[4pt]x(1)=\sum_{i=1}^{m-2}a_ix(\eta_i),\qquad x^{(i)}(0)=0,&0\leq i\leq k-1,\\[4pt]x^{(j)}(1)=0,&1\leq j\leq n-k-1,\end{array}\right.$$ where m≥3, λ>0, a i ∈[0,∞),(i=1,2,…,m?2),0<η 1<η 2<???<η m?2<1 are constants, f:(0,1)×[0,+∞)→R is continuous and may have singularity at t=0 and/or 1. Without making any monotone-type assumption, we obtain the positive solution of the problem for λ lying in some interval, based on fixed-point index theorem in a cone.  相似文献   

2.
Some results of existence of positive solutions for singular boundary value problem $$\left\{\begin{array}{l}\displaystyle (-1)^{m}u^{(2m)}(t)=p(t)f(u(t)),\quad t\in(0,1),\\[2mm]\displaystyle u^{(i)}(0)=u^{(i)}(1)=0,\quad i=0,\ldots,m-1,\end{array}\right.$$ are given, where the function p(t) may be singular at t=0,1. Our analysis relies on the variational method.  相似文献   

3.
In this paper, we are concerned with the existence criteria for positive solutions of the following nonlinear arbitrary order fractional differential equations with deviating argument
$\left \{{l@{\quad}l}D_{0^+}^{\alpha}u(t)+h(t)f(u(\theta(t)))=0, & t\in ( 0,1 ),\ n-1<\alpha\leq n,\\[3pt]u^{(i)}(0)=0, & i=0,1,2,\ldots,n-2,\\[3pt][D_{0^+}^{\beta} u(t)]_{t=1}=0, & 1\leq\beta\leq n-2, \right .$\left \{\begin{array}{l@{\quad}l}D_{0^+}^{\alpha}u(t)+h(t)f(u(\theta(t)))=0, & t\in ( 0,1 ),\ n-1<\alpha\leq n,\\[3pt]u^{(i)}(0)=0, & i=0,1,2,\ldots,n-2,\\[3pt][D_{0^+}^{\beta} u(t)]_{t=1}=0, & 1\leq\beta\leq n-2,\end{array} \right .  相似文献   

4.
This paper is concerned with the following fourth-order m-point nonhomogeneous boundary value problem $$\begin{array}{l}u^{(4)}(t)=f(t,u(t),u^{\prime \prime }(t)),\quad 0<t<1,\\[3pt]u(0)=u(1)=u^{\prime \prime }(0)=0,\\[3pt]u^{\prime \prime }(1)-\displaystyle\sum_{i=1}^{m-2}a_{i}u^{\prime\prime }(\xi _{i})=-\lambda ,\end{array}$$ where a i ≥0 (i=1,2,…,m?2), 0<ξ12<??? m?2<1 and ∑ i=1 m?2 a i ξ i <1, and λ>0 is a parameter. The existence and nonexistence of positive solution are discussed for suitable λ>0 when f is superlinear or sublinear. The main tool used is the well-known Guo-Krasnoselskii fixed point theorem.  相似文献   

5.
We mainly study the existence of positive solutions for the following third order singular super-linear multi-point boundary value problem $$ \left \{ \begin{array}{l} x^{(3)}(t)+ f(t, x(t), x'(t))=0,\quad0 where \(0\leq\alpha_{i}\leq\sum_{i=1}^{m_{1}}\alpha_{i}<1\) , i=1,2,…,m 1, \(0<\xi_{1}< \xi_{2}< \cdots<\xi_{m_{1}}<1\) , \(0\leq\beta_{j}\leq\sum_{i=1}^{m_{2}}\beta_{i}<1\) , j=1,2,…,m 2, \(0<\eta_{1}< \eta_{2}< \cdots<\eta_{m_{2}}<1\) . And we obtain some necessary and sufficient conditions for the existence of C 1[0,1] and C 2[0,1] positive solutions by means of the fixed point theorems on a special cone. Our nonlinearity f(t,x,y) may be singular at t=0 and t=1.  相似文献   

6.
Let Ω be a bounded domain in ${\mathbb{R}^2}$ with smooth boundary. We consider the following singular and critical elliptic problem with discontinuous nonlinearity: $$(P_\lambda)\left \{\begin{array}{ll} - \Delta u = \lambda \left(\frac{m(x, u) e^{\alpha{u}^2}}{|x|^{\beta}} + u^{q}g(u - a)\right),\quad{u} > 0 \quad {\rm in} \quad \Omega\\u \quad \quad = 0\quad {\rm on} \quad \partial \Omega \end{array}\right.$$ where ${0\leq q < 1 ,0< \alpha\leq4\pi}$ and ${\beta \in [0, 2)}$ such that ${\frac{\beta}{2} + \frac{\alpha}{4\pi} \leq 1}$ and ${{g(t - a) = \left\{\begin{array}{ll}1, t \leq a\\ 0, t > a.\end{array}\right.}}$ Under the suitable assumptions on m(x, t) we show the existence and multiplicity of solutions for maximal interval for λ.  相似文献   

7.
Intervals of the parameters λ and μ are determined for which there exist positive solutions to the system of dynamic equations $$ \begin{array}{lll} && (-1)^nu^{\Delta^{2n}}(t)+\lambda p(t)f(v(\sigma(t)))=0,\quad t\in[a, b], \\ &&(-1)^n v^{\Delta^{2n}}(t)+\mu q(t)g(u(\sigma(t)))=0, \quad t\in[a, b], \end{array} $$ satisfying the Sturm–Liouville boundary conditions $$ \begin{array}{lll} &&\alpha_{i+1} u^{\Delta^{2i}}(a)-\beta_{i+1} u^{\Delta^{2i+1}}(a)=0,\;\gamma_{i+1} u^{\Delta^{2i}}(\sigma(b))+\delta_{i+1} u^{\Delta^{2i+1}}(\sigma(b))=0,\\ &&\alpha_{i+1} v^{\Delta^{2i}}(a)-\beta_{i+1} v^{\Delta^{2i+1}}(a)=0,\; \gamma_{i+1} v^{\Delta^{2i}}(\sigma(b))+\delta_{i+1} v^{\Delta^{2i+1}}(\sigma(b))=0, \end{array} $$ for 0?≤?i?≤?n???1. To this end we apply a Guo–Krasnosel’skii fixed point theorem.  相似文献   

8.
In this paper, by using the Mawhin’s continuation theorem, we obtain an existence theorem for some higher order multi-point boundary value problems at resonance in the following form: $$\begin{array}{lll}x^{(n)}(t) = f(t,x(t),x'(t),\ldots,x^{(n-1)}(t))+e(t),\ t\in(0,1),\\x^{(i)}(0) = 0, i=0,1,\ldots,n-1,\ i\neq p, \\x^{(k)}(1) = \sum\limits_{j=1}^{m-2}{\beta_j}x^{(k)}(\eta_j),\end{array}$$ where ${f:[0,1]\times \mathbb{R}^n \to \mathbb{R}=(-\infty,+\infty)}$ is a continuous function, ${e(t)\in L^1[0,1], p, k\in\{0,1,\ldots,n-1\}}$ are fixed, m ≥ 3 for pk (m ≥ 4 for p > k), ${\beta_j \in \mathbb{R}, j=1,2,\ldots,m-2, 0 < \eta_1 < \eta_2 < \cdots < \eta_{m-2} <1 }$ . We give an example to demonstrate our results.  相似文献   

9.
Let {X k,i ; i ≥ 1, k ≥ 1} be a double array of nondegenerate i.i.d. random variables and let {p n ; n ≥ 1} be a sequence of positive integers such that n/p n is bounded away from 0 and ∞. In this paper we give the necessary and sufficient conditions for the asymptotic distribution of the largest entry ${L_{n}={\rm max}_{1\leq i < j\leq p_{n}}|\hat{\rho}^{(n)}_{i,j}|}$ of the sample correlation matrix ${{\bf {\Gamma}}_{n}=(\hat{\rho}_{i,j}^{(n)})_{1\leq i,j\leq p_{n}}}$ where ${\hat{\rho}^{(n)}_{i,j}}$ denotes the Pearson correlation coefficient between (X 1,i , ..., X n,i )′ and (X 1,j ,...,X n,j )′. Write ${F(x)= \mathbb{P}(|X_{1,1}|\leq x), x\geq0}$ , ${W_{c,n}={\rm max}_{1\leq i < j\leq p_{n}}|\sum_{k=1}^{n}(X_{k,i}-c)(X_{k,j}-c)|}$ , and ${W_{n}=W_{0,n},n\geq1,c\in(-\infty,\infty)}$ . Under the assumption that ${\mathbb{E}|X_{1,1}|^{2+\delta} < \infty}$ for some δ > 0, we show that the following six statements are equivalent: $$ {\bf (i)} \quad \lim_{n \to \infty} n^{2}\int\limits_{(n \log n)^{1/4}}^{\infty}\left( F^{n-1}(x) - F^{n-1}\left(\frac{\sqrt{n \log n}}{x}\right) \right) dF(x) = 0,$$ $$ {\bf (ii)}\quad n \mathbb{P}\left ( \max_{1 \leq i < j \leq n}|X_{1,i}X_{1,j} | \geq \sqrt{n \log n}\right ) \to 0 \quad{\rm as}\,n \to \infty,$$ $$ {\bf (iii)}\quad \frac{W_{\mu, n}}{\sqrt {n \log n}}\stackrel{\mathbb{P}}{\rightarrow} 2\sigma^{2},$$ $$ {\bf (iv)}\quad \left ( \frac{n}{\log n}\right )^{1/2} L_{n} \stackrel{\mathbb{P}}{\rightarrow} 2,$$ $$ {\bf (v)}\quad \lim_{n \rightarrow \infty}\mathbb{P}\left (\frac{W_{\mu, n}^{2}}{n \sigma^{4}} - a_{n}\leq t \right ) = \exp \left \{ - \frac{1}{\sqrt{8\pi}} e^{-t/2}\right \}, - \infty < t < \infty,$$ $$ {\bf (vi)}\quad \lim_{n \rightarrow \infty}\mathbb{P}\left (n L_{n}^{2} - a_{n}\leq t \right ) = \exp \left \{ - \frac{1}{\sqrt{8 \pi}} e^{-t/2}\right \}, - \infty < t < \infty$$ where ${\mu=\mathbb{E}X_{1,1}, \sigma^{2}=\mathbb{E}(X_{1,1} - \mu)^{2}}$ , and a n  = 4 log p n ? log log p n . The equivalences between (i), (ii), (iii), and (v) assume that only ${\mathbb{E}X_{1,1}^{2} < \infty}$ . Weak laws of large numbers for W n and L n , n ≥  1, are also established and these are of the form ${W_{n}/n^{\alpha}\stackrel{\mathbb{P}}{\rightarrow} 0}\,(\alpha > 1/2)$ and ${n^{1-\alpha}L_{n}\stackrel{\mathbb{P}}{\rightarrow} 0}\,(1/2 < \alpha \leq 1)$ , respectively. The current work thus provides weak limit analogues of the strong limit theorems of Li and Rosalsky as well as a necessary and sufficient condition for the asymptotic distribution of L n obtained by Jiang. Some open problems are also posed.  相似文献   

10.
In this paper, we are concerned with the following nth-order ordinary differential equation $$x^{(n)}(t)+f(t,x(t),x'(t),\ldots,x^{(n-1)}(t))=0,\quad t\in (0,1),$$ with the nonlinear boundary conditions $$\begin{array}{l}x^{(i)}(0)=0,\quad i=0,1,\ldots,n-3,\\[3pt]g(x^{(n-2)}(0),x^{(n-1)}(0),x(\xi_1),\ldots,x(\xi_{m-2}))=A,\\[3pt]h(x^{(n-2)}(1),x^{(n-1)}(1),x(\eta_1),\ldots,x(\eta_{l-2}))=B,\end{array}$$ here A,BR, f:[0,1]×R n R is continuous, g:[0,1]×R m R is continuous, h:[0,1]×R l R is continuous, ξ i ∈(0,1), i=1,…,m?2, and η j ∈(0,1), j=1,…,l?2. The existence result is given by using a priori estimate, Nagumo condition, the method of upper and lower solutions and Leray-Schauder degree. We also give an example to demonstrate our result.  相似文献   

11.
In 1970, J.B. Kelly proved that $$\begin{array}{ll}0 \leq \sum\limits_{k=1}^n (-1)^{k+1} (n-k+1)|\sin(kx)| \quad{(n \in \mathbf{N}; \, x \in \mathbf{R})}.\end{array}$$ We generalize and complement this inequality. Moreover, we present sharp upper and lower bounds for the related sums $$\begin{array}{ll} & \sum\limits_{k=1}^{n} (-1)^{k+1}(n-k+1) | \cos(kx) | \quad {\rm and}\\ & \quad{\sum\limits_{k=1}^{n} (-1)^{k+1}(n-k+1)\bigl( | \sin(kx) | + | \cos(kx)| \bigr)}.\end{array}$$   相似文献   

12.
We consider boundary value problems for nonlinear 2mth-order eigenvalue problem $$ \begin{gathered} ( - 1)^m u^{(2m)} (t) = \lambda a(t)f(u(t)),0 < t < 1, \hfill \\ u^{(2i)} (0) = u^{(2i)} (1) = 0,i = 0,1,2,...,m - 1. \hfill \\ \end{gathered} $$ . where aC([0, 1], [0, ∞)) and a(t 0) > 0 for some t 0 ∈ [0, 1], fC([0, ∞), [0, ∞)) and f(s) > 0 for s > 0, and f 0 = ∞, where $ \mathop {\lim }\limits_{s \to 0^ + } f(s)/s $ . We investigate the global structure of positive solutions by using Rabinowitz’s global bifurcation theorem.  相似文献   

13.
Let G be a homogeneous group, and let X 1, X 2, … , X m be left invariant real vector fields being homogeneous of degree one on G. We consider the following Dirichlet boundary value problem of the sub-Laplace equation involving the critical exponent and singular term: $$\left\{\begin{array}{ll}-\sum_{j=1}^{m}X_j^2u(x)-\frac{a}{\|x\|^\nu}u(x)=u^{\frac{Q+2}{Q-2}}(x), x\in\Omega,\\ u(x)=0, \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\,\,\,\, x\in \partial\Omega,\end{array}\right.$$ where ${\Omega\subset G}$ is a bounded domain with smooth boundary and ${\mathbf{0}\in\Omega}$ , Q is the homogeneous dimension of G, ${a\in \mathbb{R},\ \nu <2 }$ . We boost u to ${L^p(\Omega)}$ for any ${1\leq p < \infty}$ if ${u\in S^{1,2}_0(\Omega)}$ is a weak solution of the problem above.  相似文献   

14.
For the functional differential equationu (n) (t)=f(u)(t) we have established the sufficient conditions for solvability and unique solvability of the boundary value problems $$u^{(i)} (0) = c_i (i = 0,...,m - 1), \smallint _0^{ + \infty } |u^{(m)} (t)|^2 dt< + \infty $$ and $$\begin{gathered} u^{(i)} (0) = c_i (i = 0),...,m - 1, \hfill \\ \smallint _0^{ + \infty } t^{2j} |u^{(j)} (t)|^2 dt< + \infty (j = 0,...,m), \hfill \\ \end{gathered} $$ wheren≥2,m is the integer part of $\tfrac{n}{2}$ ,c i R, andf is the continuous operator acting from the space of (n?1)-times continuously differentiable functions given on an interval [0,+∞] into the space of locally Lebesgue integrable functions.  相似文献   

15.
We investigate the asymptotic behaviour as p of sequences of positive weak solutions of the equation $$\left\{\begin{array}{l}-\Delta_p u = \lambda\,u^{p-1}+ u^{q(p)-1}\quad {\rm in}\quad \Omega,\\ u = 0 \quad {\rm on}\quad \partial\Omega,\end{array} \right.$$ where λ > 0 and either 1 < q(p) < p or pq(p), with ${{\lim_{p\to\infty}{q(p)}/{p}=Q\neq1}}$ . Uniform limits are characterized as positive viscosity solutions of the problem $$\left\{\begin{array}{l}\min\left\{|\nabla u (x)| - \max\{\Lambda\,u (x),u ^Q(x)\}, -\Delta_{\infty}u (x)\right\} = 0 \quad {\rm in} \quad \Omega,\\ u = 0\quad {\rm on}\quad \partial\Omega.\end{array}\right.$$ for appropriate values of Λ > 0. Due to the decoupling of the nonlinearity under the limit process, the limit problem exhibits an intermediate behavior between an eigenvalue problem and a problem with a power-like right-hand side. Existence and non-existence results for both the original and the limit problems are obtained.  相似文献   

16.
In this paper we deal with local estimates for parabolic problems in ${\mathbb{R}^N}$ with absorbing first order terms, whose model is $$\left\{\begin{array}{l@{\quad}l}u_t- \Delta u +u |\nabla u|^q = f(t,x) \quad &{\rm in}\, (0,T) \times \mathbb{R}^N\,,\\u(0,x)= u_0 (x) &{\rm in}\, \mathbb{R}^N \,,\quad\end{array}\right.$$ where ${T >0 , \, N\geq 2,\, 1 < q \leq 2,\, f(t,x)\in L^1\left( 0,T; L^1_{\rm loc} \left(\mathbb{R}^N\right)\right)}$ and ${u_0\in L^1_{\rm loc}\left(\mathbb{R}^{N}\right)}$ .  相似文献   

17.
Let M?=?{ 1, 2, . . . ,?n?} and let ${\mathcal {V}=\{\,I \subseteq M: 1 \in I\,\}}$ , where n is an integer greater than 1. Denote ${M{\setminus}{I}}$ by I c for ${I \in \mathcal {V}.}$ We investigate the solution of the following generalized quartic functional equation $$\begin{array}{ll} \sum\limits_{I \in\mathcal {V}}f\, \left({\sum\limits_{i \in I}}a_ix_i-\sum\limits_{i \in I^c}a_ix_i\right) \, = \,2^{n-2} \sum\limits_{1\leq i < j \leq n}a^2_{i}a^2_{j} \left[f(x_{i}+x_{j})+f(x_{i}-x_{j})\right] \\ \qquad \qquad \qquad \quad\quad\quad \quad\quad\quad\quad +\,2^{n-1} \sum\limits^{n}_{i=1}a^2_{i} \left(a^2_{i}-\sum\limits^{n}_{\substack{{j=1}\\{j\neq i}}}a^2_{j}\right)f(x_{i}) \end{array}$$ in β-Banach modules on a Banach algebra, where ${a_{1},\ldots, a_{n}\in \mathbb{Z}{\setminus}\{0\}}$ with a ? ?≠ ±1 for all ${\ell \in \{1 , 2, \ldots ,\,n-1\}}$ and a n ?=?1. Moreover, using the fixed point method, we prove the generalized Hyers–Ulam stability of the above generalized quartic functional equation. Finally, we give an example that the generalized Hyers–Ulam stability does not work.  相似文献   

18.
Let ?? be a real number satisfying 0?<????<?n, ${0\leq t<\alpha, \alpha{^\ast}(t)=\frac{2(n-t)}{n-\alpha}}$ . We consider the integral equation $$u(x)=\int\limits_{{\mathbb{R}^n}}\frac{u^{{\alpha{^\ast}(t)}-1}(y)}{|y|^t|x-y|^{n-\alpha}}\,dy,\quad\quad\quad\quad\quad\quad\quad(1)$$ which is closely related to the Hardy?CSobolev inequality. In this paper, we prove that every positive solution u(x) is radially symmetric and strictly decreasing about the origin by the method of moving plane in integral forms. Moreover, we obtain the regularity of solutions to the following integral equation $$u(x)=\int\limits_{{\mathbb{R}^n}}\frac{|u(y)|^{p}u(y)}{|y|^t|x-y|^{n-\alpha}}\, dy\quad\quad\quad\quad\quad\quad\quad(2)$$ that corresponds to a large class of PDEs by regularity lifting method.  相似文献   

19.
In this paper we deal with the following quasilinear parabolic problem $$\left\{\begin{array}{l@{\quad}l} (u^\theta)_t - \Delta_p {u} = \lambda \frac{u^{p - 1}}{|x|^{p}} + u^q + f,\,\, u \geq 0 \quad {\rm in} \;\;\Omega \times (0, T),\\ u(x, t) = 0 \quad\qquad\qquad\qquad\qquad\qquad\qquad {\rm on}\; \partial \Omega \times(0, T),\\ u(x, 0) = u_0(x), \,\,\, \qquad\qquad\qquad\qquad\qquad x \in\; \Omega,\end{array}\right.$$ where θ is either 1 or (p ? 1), \({N \geq 3, \,\Omega \subset \mathcal{IR}^N}\) is either a bounded regular domain containing the origin or \({\Omega \equiv \mathcal{IR}^N}\) , 1 < p < N, q > 0 and u 0 ≥  0, f ≥  0 with suitable hypotheses. The aim of this work is to get natural conditions to show the existence or the nonexistence of nonnegative solutions. In the case of nonexistence result, we analyze blow-up phenomena for approximated problems in connection with the classical Harnack inequality, in the Moser sense, more precisely in connection with a strong maximum principle. We also study when finite time extinction (1 < p < 2) and finite speed propagation (p > 2) occur related to the reaction power.  相似文献   

20.
In this paper, we study the existence of positive solutions to the boundary value problem for the fractional differential system $$\left\{\begin{array}{lll} D_{0^+}^\beta \phi_p(D_{0^+}^\alpha u) (t) = f_1 (t, u (t), v (t)),\quad t \in (0, 1),\\ D_{0^+}^\beta \phi_p(D_{0^+}^\alpha v) (t) = f_2 (t, u (t), v(t)), \quad t \in (0, 1),\\ D_{0^+}^\alpha u(0)= D_{0^+}^\alpha u(1)=0,\; u (0) = 0, \quad u (1)-\Sigma_{i=1}^{m-2} a_{1i}\;u(\xi_{1i})=\lambda_1,\\ D_{0^+}^\alpha v(0)= D_{0^+}^\alpha v(1)=0,\; v (0) = 0, \quad v (1)-\Sigma_{i=1}^{m-2} a_{2i}\; v(\xi_{2i})=\lambda_2, \end{array}\right. $$ where ${1<\alpha,\beta\leq 2, 2 <\alpha + \beta\leq 4, D_{0^+}^\alpha}$ is the Riemann–Liouville fractional derivative of order α. By using the Leggett–Williams fixed point theorem in a cone, the existence of three positive solutions for nonlinear singular boundary value problems is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号