首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrical, thermal and mechanical properties of nanocomposites, based on polypropylene (PP) filled by multi-walled carbon nanotubes (MWCNTs) and organo-clay (OC), were studied with the purpose of finding out the effect of OC on the microstructure of MWCNTs dispersion and PP/MWCNT/OC composites. It was found that addition of organo-clay nanoparticles improved nanotube dispersion and enhanced electrical properties of PP/MWCNT nanocomposites. Addition of organo-clay (MWCNT/OC ratio was 1/1) reduced the percolation threshold of PP/MWCNT nanocomposites from ?c = 0.95 vol.% to ?c = 0.68 vol.% of carbon nanotubes, while the level of conductivity became 2–4 orders of magnitude higher. The DSC and DMA analyses have shown that the influence of organo-clay on the thermal and mechanical properties of material was not significant in composites with both fillers as compared to PP/OC. Such an effect can be caused by stronger interaction of OC with carbon nanotubes than with polymer matrix.  相似文献   

2.
This paper focuses on the influence of ionic liquid on carbon nanotube based elastomeric composites. Multi-walled carbon nanotubes (MWCNTs) are modified using an ionic liquid at room temperature, 1-butyl 3-methyl imidazolium bis (trifluoromethylsulphonyl) imide (BMI) and modified MWCNTs exhibit physical (cation–π/π–π) interaction with BMI. The polychloroprene rubber (CR) composites are prepared using unmodified and BMI modified MWCNTs. The presence of BMI not only increases the alternating current (AC) electrical conductivity and polarisability of the composites but also improves the state of dispersion of the tubes as observed from dielectric spectroscopy and transmission electron microscopy respectively. In addition to the hydrodynamic reinforcement, the formation of improved filler–filler networks is reflected in the dynamic storage modulus (E′) for modified MWCNTs/CR composites in amplitude sweep measurement upon increasing the proportion of BMI. Hardness and mechanical properties are also studied for the composites as a function of BMI.  相似文献   

3.
Acid-oxidized multiwalled carbon nanotubes (MWCNTs) were introduced into a polyurethane (PU) matrix at low filler levels (0.01–0.25 wt%) through either van der Waals or covalent interactions, and their glass transition dynamics using dynamic mechanical analysis and laser-interferometric creep rate spectroscopy was investigated. The nanocomposites reveal substantial impact on the PU glass transition dynamics, which depends on the nanotube content and type of interfacial interactions. The pronounced dynamic heterogeneity within the glass transition covering 200 °C range and the displacement of main PU relaxation maxima from around 0 to 80–140 °C were registered. The results are treated in the framework of chemical inhomogeneity, constrained dynamics effects, and different motional cooperativities. The peculiariaties of the glass transition dynamics in the composites are reflected in their dynamic and static mechanical properties, in particular a two- to threefold increase in modulus and tensile strength for the covalent interfacial interaction of MWCNTs with PU.  相似文献   

4.
Multi-walled carbon nanotubes (MWNTs) reinforced polyimide nanocomposites were synthesized by in situ polymerization using 4,4′-oxydianilline, MWNTs, and pyromellitic dianhydride followed by casting, evaporation and thermal imidization. A homogeneous dispersion of chemically modified MWNTs was achieved in polyimide matrix as evidenced by scanning electron microscopy and atomic force microscopy. The incorporation of the modified MWNTs enhanced the mechanical properties of the polyimide due to the presence of strong interfacial interaction between the polymer matrix and the nanotubes in polymer composites. The resultant polyimide/MWNTs nanocomposites were electrically conductive with significant conductivity enhancement at 3 wt% MWNTs, which is favorable for many practical uses.  相似文献   

5.
Effect of ZnO nanoparticles particles on the mechanical properties and the curing behavior of an epoxy nanocomposite were studied. Nanocomposites were prepared using different loadings of pre-dispersed ZnO nanoparticles having an average size of 40 nm. The surface topography and morphology of the nanocomposites were studied using atomic force microscope (AFM). The mechanical properties of nanocomposites were studied using analytical techniques including dynamic mechanical thermal analysis and micro-Vickers hardness. Effects of ZnO nanoparticles on the curing behavior of these nanocomposites were investigated utilizing isothermal and non-isothermal differential scanning calorimeter techniques. In addition, chemical compositions of coatings containing different ZnO nanoparticles contents were studied using a Fourier transform inferred. It was found that, ZnO nanoparticles can effectively influence the mechanical properties of epoxy coating. In addition, lower curing degrees, and therefore crosslinking density of epoxy coating including higher ZnO nanoparticles were obtained. This effect was completely different at low and high loadings of the particles.  相似文献   

6.
Dialkyl imidazolium salt with better thermal stability than the commonly used dimethyldioctadecyl ammonium salt was synthesized and ion exchanged on the montmorillonite surface. Polypropylene nanocomposites with different volume fractions of the obtained organo-montmorillonite (OMMT) were prepared and the effect of the modified clay on the gas barrier and mechanical properties was studied. Wide angle X-ray diffraction (WAXRD) and transmission electron microscopy (TEM) were used to investigate the microstructure obtained. Thermal behavior of the composites analyzed by thermogravimetric analysis was observed to enhance significantly with the filler volume fraction. The gas permeation through the nanocomposite films markedly decreased with augmenting the filler volume fraction. The decrease in the gas permeation was even more significant than through the composites with ammonium treated montmorillonite. Better thermal behavior of the organic modification owing to the delayed onset of degradation hindered the interface degradation along with detrimental side reactions with polymer itself. Transmission electron microscopic studies indicated the presence of mixed morphology i.e., single layers and the tactoids of varying thicknesses in the composites. The crystallization behavior of polypropylene remained unaffected with OMMT addition. A linear increase in the tensile modulus was observed with filler volume fraction owing to partial exfoliation of the clay.  相似文献   

7.
Organo-modified layered silicates (OMLSs) can largely improve mechanical properties of Thermoplastic polyurethanes (TPUs) as well as affect their microdomain morphology. Nanocomposite TPU containing OMLSs were prepared by melt blending at different concentrations. The addition of OMLS has both induced variation in enthalpy of melting of hard and soft phases, and influenced the glass transition temperature of soft domains, as result of the microdomain phase segregation measured by means of fourier transform infrared spectroscopy (FT-IR). Small angle X-ray scattering (SAXS) analysis has shown that the mean distance between hard domains was mostly unaffected by the filler. However, its distribution broadened with the increasing concentration of the OMLSs, resulting in increased extent of the hard domain interface. The storage modulus of TPU nanocomposites incremented with the silicate content, while the dynamic strain scan tests showed pronounced non linear viscoelastic behavior. The analysis of morphological data obtained by SAXS and FT-IR measurements were correlated to thermal and dynamic mechanical properties of TPU samples suggesting a crucial role of the soft domains interface. The storage modulus and loss tangent of TPU nanocomposites were found to increase with the increasing of the interface area of soft domains with both hard domains and OMLS stacks.  相似文献   

8.
Epoxy composites containing particulate fillers‐fused silica, glass powder, and mineral silica were investigated to be used as substrate materials in electronic packaging application. The content of fillers were varied between 0 and 40 vol%. The effects of the fillers on the thermal properties—thermal stability, thermal expansion and dynamic mechanical properties of the epoxy composites were studied, and it was found that fused silica, glass powder, and mineral silica increase the thermal stability and dynamic thermal mechanical properties and reduce the coefficient of thermal expansion (CTE). The lowest CTE value was observed at a fused silica content of 40 vol% for the epoxy composites, which was traced to the effect of its nature of low intrinsic CTE value of the fillers. The mechanical properties of the epoxy composites were determined in both flexural and single‐edge notch (SEN‐T) fracture toughness properties. Highest flexural strength, stiffness, and toughness values were observed at fillers content of 40 vol% for all the filled epoxy composites. Scanning electron microscopy (SEM) micrograph showed poor filler–matrix interaction in glass powder filled epoxy composites at 40 vol%. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The typical nano-carbon materials, 1D fiber-like carbon nanotubes (CNTs) and 2D platelet-like graphene nanosheets (GRNs), that have attracted tremendous attention in the field of polymer nanocomposites due to their unprecedented properties, are used as conducting filler to induce a considerable improvement in the mechanical, thermal and electrical properties of the resulting graphene/polymer nanocomposites at very low loading contents. This study deals with the preparation and electro-stimulus response properties of polyurethane (PU) dielectric elastomer films with such 1D and 2D nanocarbon fillers embedded in the polymer matrix. The various forms of carbon used in composite preparation include CNT, GRN and CNT-GRN hybrid fillers. Results indicate that the dielectric, mechanical and electromechanical properties depend on the carbon filler type and the carbon filler weight fraction. Here, it has been also established that embedding CNT-GRN hybrid fillers into pristine polyurethane endows somewhat better dispersion of CNTs and GRNs as well as better interfacial adhesion between the carbon fillers and matrix, which results in an improvement in electric-induced strain. Therefore, the nanocomposites seem to be very attractive for microelectromechanical systems applications.  相似文献   

10.
In this work, poly(methyl methacrylate) (PMMA) was grafted onto amine treated multi-walled carbon nanotubes (NH-MWNTs) and the physical and rheological properties of the NH-MWNTs–g-PMMA nanocomposites were investigated. The graft reaction of NH-MWNTs and the PMMA matrix was confirmed from the change of the N1S peaks, including those of amine oxygen and amide oxygen, by X-ray photoelectron spectroscopy (XPS). The thermal and mechanical properties of the NH-MWNT–g-PMMA nanocomposites were enhanced by the graft reaction between NH-MWNTs and PMMA matrix. In addition, the viscosity of the nanocomposites was increased with the addition of NH-MWNTs. Storage (G′) and loss modulus (G″) were significantly increased by increase in the NH-MWNT content compared to acid-treated MWNTs/PMMA nanocomposites. This increase was attributed to the strong interaction by the grafting reaction between NH-MWNTs and the PMMA matrix.  相似文献   

11.
The influence of Shorea robusta natural filler loading (5, 10, 15, 20, and 25 v/v%) on the mechanical, dynamic mechanical, biodegradability, and thermal stability of the polyester composite was analyzed. The composites were fabricated using hand lay-up method. The maximum mechanical properties, storage modulus, and glass transition temperature were observed for the composite with 20 v/v% filler. The peak height of Tanδ was found to be lesser for the same. Thermal analysis results revealed that the thermal stability of composite increased with the incorporation of Shorea robusta as natural filler. Biodegradability testing showed that the addition of filler resulted in weight loss of the composite under soil burial test.  相似文献   

12.
Polymer blend nanocomposites based on thermoplastic polyurethane (PU) elastomer, polylactide (PLA) and surface modified carbon nanotubes were prepared via simple melt mixing process and investigated for its mechanical, dynamic mechanical and electroactive shape memory properties. Chemical and structural characterization of the polymer blend nanocomposites were investigated by Fourier Transform infrared (FT-IR) and wide angle X-ray diffraction (WAXD). Loading of the surface modified carbon nanotube in the PU/PLA polymer blends resulted in the significant improvement on the mechanical properties such as tensile strength, when compared to the pure and pristine CNT loaded polymer blends. Dynamic mechanical analysis showed that the glass transition temperature (Tg) of the PU/PLA blend slightly increases on loading of pristine CNT and this effect is more pronounced on loading surface modified CNTs. Thermal and electrical properties of the polymer blend composites increases significantly on loading pristine or surface modified CNTs. Finally, shape memory studies of the PU/PLA/modified CNT composites exhibit a remarkable recoverability of its shape at lower applied dc voltages, when compared to pure or pristine CNT loaded system.  相似文献   

13.
We synthesized waterborne polyurethane (WPU)/allyl isocyanate modified graphene oxide (iGO) nanocomposites by UV curing, and the effects of iGO on the mechanical, dynamic mechanical, and thermal properties of the nanocomposites were systematically investigated. It was shown that the iGO chemically incorporated into the WPU chains by covalent bonding acts as a multifunctional cross-linking agent as well as reinforcing filler. Consequently, the tensile strength, glassy and rubbery state moduli, glass transition temperature, and thermal stability of the WPU were significantly increased up to an iGO content of 1%, beyond which most of the above properties showed a decrease, due probably to the auto-inhibition of the allyl compounds.  相似文献   

14.
《先进技术聚合物》2018,29(7):2134-2146
This work aims at investigating the dynamic mechanical properties of in situ anionic ring opening polymerized polyamide 12 in the presence of multi‐walled carbon nanotubes (MWCNT). According to the dynamic mechanical thermal analysis results, the addition of only 0.1 wt.% of MWCNTs led to 30% enhancement in modulus at room temperature which exhibited improved mechanical behavior of the nanocomposites. Test results showed that by the presence of 1.2% wt MWCNTs, the modulus is almost doubled, and it did not show any tangible changes by the addition of more nanotubes. Also, the effect of different frequencies on the viscoelastic behavior was investigated in order to determine the thermal transitions occurred in the synthesized nanocomposites. After that, the crystallinity of the samples has been studied using differential scanning calorimetry and X‐ray diffraction data in order to investigate the effect of MWCNT content on the crystals' dimension.  相似文献   

15.
This paper presents the properties of epoxy nanocomposites, prepared using a synthesized hybrid Polypyrrole-Graphene Oxide (PPy-GO) filler, via in-situ chemical polymerization, at various filler loadings (i.e., 0.5–2 w. t %). The microstructures and properties of the PPy-GO hybrids and epoxy nanocomposites were studied via Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), mechanical (Tensile Properties), electrical, Dynamic mechanical thermal analysis (DMTA) and thermogravimetric analyses (TGA). Morphological study demonstrated that varying the nanofiller nature (PPy-GOs, PPy or GO) lead to different states of dispersion. Mechanical, electrical and thermal analysis demonstrated that the hybrid concentration and its architecture (PPy:GO ratio) are interesting factors significantly affected the properties of the epoxy based nanocomposites. On the other hand, the mechanical performance of the cured nanocomposites outperformed the PPy-GO, with enhancements of 78% and 51% of Young's modulus and strength, respectively. Here it has been established that the embedding of PPy-GO hybrids into pristine epoxy endows optimum dispersion of PPy and GO as well as better interfacial adhesion between the fillers and matrix, which results in a significant improvement in load transfer effectiveness. Electrical conductivity measurements showed that conductivity of epoxy filled nanocomposites increased up 10−4 S/cm for Epoxy/PPy-GO nanocomposites. DMTA test indicated that incorporation of PPy-GO resulted in a significantly increase in Tg of the resultant nanocomposites, which is attributed to the highly exfoliation structure and the stronger interfacial interaction. The PPy-GO particles enhanced electrical, thermal and mechanical properties of nanocomposites, confirming the synergistic effect of PPy-GO as multifunctional filler.  相似文献   

16.
Multi-walled carbon nanotubes (MWCNT)/poly(methyl methacrylate) (PMMA) nanocomposites were synthesized by the in situ reversible addition-fragmentation chain transfer (RAFT) polymerization of methyl methacrylate (MMA) in the presence of MWCNTs, at which the bulk polymer was grafted onto the surface of nanotubes through the ??grafting through?? strategy. For this purpose, MWCNTs were formerly functionalized with polymerizable MMA groups. MMA and PMMA-grafted MWCNTs were characterized by Fourier-transform infrared spectroscopy, Raman, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Dissolution of nanotubes was examined in chloroform solvent and studied by UV?Cvis spectroscopy. Thermogravimetric and degradation behavior of prepared nanocomposites was investigated by TGA. MWCNTs had a noticeable boosting effect on the thermal stability of nanocomposites. TGA thermograms showed a two-step weight loss pattern for the degradation of MWCNT-PMMA/PMMA nanocomposites which is contrast with neat PMMA. Introduction of MWCNTs also improved the dynamic mechanical behavior and electrical conductivity of nanocomposites. TEM micrograph of nanocomposite revealed that the applied methods for functionalization of nanotubes and in situ synthesis of nanocomposites were comparatively successful in dispersing the MWCNTs in PMMA matrix.  相似文献   

17.
Multiwall carbon nanotubes (MWCNTs) can be spread out in acrylonitrile butadiene styrene (ABS) using a twin-screw micro-compounding extruder. It can significantly improve the mechanical properties of 3D-printed objects. Dispersed MWCNTs in pure ABS to develop the nanocomposites through a two-time micro compounding extruding process. 3D printed filaments with a diameter of 1.75 mm have been prepared by processing the acquired composite structure through a filament extruder. The mechanical and other properties of 3D printed pure ABS and 1, 2, and 3 wt.% of the fused deposition modeling (FDM) process were studied for MWCNTs/ABS composites. Compared with pure ABS, the tensile and thermal properties were significant for 1, 2, and 3 wt.% of MWCNTs/ABS composites. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were also analyzed for 0, 1, 2, and 3 wt.% MWCNTs/ABS composites. Additive manufacturing (AM) processes have recently been emphasized for their applications in electronics, aerospace, biomedical, and automobile engineering.  相似文献   

18.
In this study, an attempt is made to improve the properties of PMSQ, an organosilicone polymer which possesses distinguished properties, through an easy and facile route by the inclusion of organically modified montmorillonite clay. PMSQ-clay composites were prepared by solution blending of the components initially and then heat curing under load. The effect of clay content, varied at 5–40 wt.%, on mechanical, thermal and dynamic mechanical properties was evaluated and the optimum was obtained for 20%. Morphology investigation as well as microstructure analysis revealed intercalated to exfoliated morphology of PMSQ-clay composite. An appreciable improvement in mechanical properties of PMSQ, compressive strength and impact strength in particular, was achieved by clay inclusion up to 20%. The properties declined at ≥ 30% clay loading. The composites showed increased thermal stability compared to unmodified PMSQ up to 400 °C. Also, increase in clay content accelerated conversion to ceramic SiOC. PMSQ-clay composites exhibited good visco-elastic characteristics with higher Tg probably due to enhanced polymer-clay interactions. Thus, a simple and viable method to enhance the mechanical and thermal characteristics of PMSQ by way of preparing its composite with the reinforcing filler organoclay is demonstrated here.  相似文献   

19.
In this study, polyamide 12 (PA12)/untreated halloysite nanotubes (HNTs) nanocomposites are prepared in a semi‐industrial scale extruder using a non‐traditional “one step” water‐assisted extrusion process. A morphological study is carried out using a combination of scanning electron microscopy and transmission electron microscopy analyses to evaluate the influence of water injection and filler content on the quality of clay dispersion. The use of water injection slightly improves the nanoscale dispersion at low HNTs content (<8 wt.%), while this effect is more pronounced at higher filler loading (16 wt.%). A mechanism explaining the physico‐chemical action of water during extrusion is proposed. The materials are characterized with respect to their mechanical, thermo‐mechanical, thermal and fire properties. A strong correlation is found between nanostructure and physical properties; the more uniform dispersion of the clay nanotubes, the higher mechanical reinforcement, thermal stability and fire retardancy of PA12 nanocomposites. Tensile tests results are interpreted in terms of three mechanical models: the Halpin–Tsai's model for stiffness and the interfacial strength model and the Pukanszky's equation for yield strength. Linear fits of the experimental data confirm that the superior reinforcement of nanocomposites prepared using water injection results from improved clay dispersion and better interfacial adhesion between PA12 and HNTs. In view of these promising results, the proposed direct melt compounding method could be easily scaled‐up towards the production of PA12–HNTs nanocomposites at an industrial scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Uniform dispersion of graphene nanosheets (GNS) in a polymer matrix with strong filler–matrix interfacial interaction, preserving intrinsic material properties of GNS, is the critical factor for application of GNS in polymer composites. In this work, a novel reactive copolymer VCz–GMA containing carbazole and epoxide group was designed, synthesized and employed to noncovalently functionalize GNS for preparing epoxy nanocomposites with enhanced mechanical properties. The presence of carbazole groups in VCz–GMA enables the tight absorption of copolymer on to graphene surface via π–π stacking interaction, as evidenced by Raman and fluorescence spectroscopy, whereas the epoxide segments chemically reacts with the epoxy matrix, improving the compatibility and interaction of graphene with epoxy matrix. As a result, the VCz–GMA–GNS/epoxy composite showed a remarkable enhancement in both mechanical and thermal property than either the pure epoxy or the graphene/epoxy composites. The incorporation of 0.35 wt % VCz–GMA–GNS yields a tensile strength of 55.72 MPa and elongation at break of 3.45, which are 42 and 191% higher than the value of pure epoxy, respectively. Increased glass transition temperature and thermal stability of the epoxy composites were also observed. In addition, a significant enhancement in thermal conductivity was achieved with only 1 wt % VCz–GMA–GNS loading. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2776–2785  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号