首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 169 毫秒
1.
There is broad scientific interest in lamellar zeolitic materials for a large variety of technological applications. The traditional synthetic methods towards two‐dimensional (2D) zeolitic precursors have made a great impact in the construction of families of related zeolites; however, the connection between structurally distinct 2D zeolitic precursors is much less investigated in comparison, thereby resulting in a synthetic obstacle that theoretically limits the types of zeolites that can be constructed from each layer. Herein, we report a Ge‐recycling strategy for the topotactic conversion between different 2D zeolitic precursors through a three‐dimensional (3D) germanosilicate. Specifically, the intermediate germanosilicate can be constructed within 150 min by taking advantage of its structural similarity with the parent lamellar precursor. This process enables the conversion of one 2D zeolite structure into another distinct structure, thus overcoming the synthetic obstacle between two families of zeolitic materials.  相似文献   

2.
《化学:亚洲杂志》2017,12(20):2711-2719
Three hierarchical porous zeolites (H‐*BEA, H‐MTW, and H‐*MRE) were successfully synthesized with the assistance of designed cationic surfactants under hydrothermal synthesis conditions. The as‐synthesized zeolite samples can be easily regulated by changing the number of long hydrophobic n ‐alkyl chains. Also, we investigated the relationship between the length of the surfactant and the formation of the microporous structure of the zeolite. Furthermore, the alkylation of benzene with propene was performed as a probe reaction to evaluate the catalytic performance of the synthesized hierarchical zeolites. The resulting materials were characterized by using a complementary combination of techniques, that is, X‐ray powder diffraction, N2 adsorption–desorption isotherms, scanning electron microscopy, transmission electron microscopy, Fourier transform IR spectroscopy, 28Si and 27Al MAS NMR spectroscopies, thermogravimetric analysis, and computer simulation. These analysis results indicated that quaternary ammonium surfactants acted as organic structure‐directing agents (OSDAs) in the formation of these hierarchical zeolite samples, whether the surfactant had long hydrophobic tail groups or not. The simulation results indicated that the organic molecules with no long hydrophobic chain could lead to the synthesis of zeolite through charge control, and the hydrophobic molecules with long hydrophobic chains could form zeolites through orbital control. These hierarchical zeolites showed improved catalytic activity towards the industrially relevant alkylation of benzene with propene compared with conventional zeolites with the same frameworks. More importantly, the success of using quaternary ammonium surfactants with no hydrophobic n ‐alkyl tail group in the synthesis of hierarchically structured mesoporous zeolites provides a new pathway for the synthesis of hierarchical porous materials by a soft‐templating method.  相似文献   

3.
Designing zeolites with tunable physicochemical properties can substantially impact their performance in commercial applications, such as adsorption, separations, catalysis, and drug delivery. Zeolite synthesis typically requires an organic structure‐directing agent to produce crystals with specific pore topology. Attempts to remove organics from syntheses to achieve commercially viable methods of preparing zeolites often lead to the formation of impurities. Herein, we present organic‐free syntheses of two polymorphs of the small‐pore zeolite P (GIS), P1 and P2. Using a combination of adsorption measurements and density functional theory calculations, we show that GIS polymorphs are selective adsorbents for H2O relative to other light gases (e.g., H2, N2, CO2). Our findings refute prior theoretical studies postulating that GIS‐type zeolites are excellent materials for CO2 separation/sequestration. We also show that P2 is significantly more thermally stable than P1, which broadens the operating conditions for GIS‐type zeolites in commercial applications and opens new avenues for exploring their potential use in processes such as catalysis.  相似文献   

4.
Siliceous zeolites are ideally suited for emerging applications in gas separations, sensors, and the next generation of low‐k dielectric materials, but the use of fluoride in the synthesis significantly hinders their commercialization. Herein, we show that the dry gel conversion (DGC) technique can overcome this problem. Fluoride‐free synthesis of two siliceous zeolites—AMH‐4 (CHA‐type) and AMH‐5 (STT‐type), has been achieved for the first time using the method. Siliceous *BEA‐, MFI‐, and *MRE‐type zeolites have also been synthesized to obtain insights into the crystallization process. Charge‐balancing interactions between the inorganic cation, organic structure‐directing agent (OSDA), and Si?O? defects are found to be an essential aspect. We quantify this factor in terms of the “OSDA charge/silica ratio” of the as‐made zeolites and demonstrate that the DGC technique is broadly applicable and opens up new avenues for fluoride‐free siliceous zeolite synthesis.  相似文献   

5.
Metal–organic frameworks (MOF) materials are promising materials for gas separation, but their application still faces various challenges. A strategy is now reported for introducing subunits of MOFs into traditional zeolite frameworks to obtain applicable adsorbents with advantages of both zeolites and MOFs. The subunits of ZIFs were introduced into zeolite Y and zeolite ZSM‐5 for CH4/N2 separation. Both the molecular simulation and experimental results validated that the IAST CH4/N2 selectivity of the resulting samples greatly improved (above 8, at 100 kPa and 25 °C) with the incorporation of ZIF subunits into zeolites structure, and the selectivities were obviously higher than that of zeolites and even better than that of ZIFs. This strategy not only gave rise to an efficient adsorbent for CH4/N2 separation but also provided ideas for design of other adsorption and separation materials.  相似文献   

6.
The crystallization chemistry of silica‐based zeolites in ionic liquids remains highly puzzling and interesting in the field of zeolite science. Herein, we report the successful ionothermal synthesis of germanosilicate zeolites. The ionothermal templating effect with respect to the structure, alkalinity and concentration of organic additives was comparatively studied. The results showed that a small amount of organic base could effectively aid the dissolution of silica source and facilitate the crystallization of germanosilicate zeolites with ionic liquid as template. Remarkably, STW and IRR structures constructed with double‐four‐ring (D4R) structure‐building units were ionothermally prepared using 1‐ethyl/butyl‐3‐methyl imidazolium and 1‐benzyl‐3‐methyl imidazolium ionic liquids as template, respectively. Ionothermal synthesis tailored with organic base showed suitable chemistry for the formation of germanium‐containing siliceous D4R units. This finding will be helpful for the rational exploration of novel extra‐large‐pore zeolitic structures.  相似文献   

7.
Given their great potential as new industrial catalysts and adsorbents, the search for new zeolite structures is of major importance in nanoporous materials chemistry. However, although innumerable theoretical frameworks have been proposed, none of them have been synthesized by a priori design yet. We generated a library of diazolium‐based cations inspired from the organic structure‐directing agents (OSDAs) recently reported to give two structurally related zeolites (PST‐21 and PST‐22) under highly concentrated, excess‐fluoride conditions and compared the stabilization energies of each OSDA cation in ten pre‐established hypothetical structures. A combination of the ability of the OSDA selected in this way with the excess‐fluoride approach has allowed us to crystallize PST‐30, the targeted aluminosilicate zeolite structure. We anticipate that our approach, which aims to rationally couple computational predictions of OSDAs with an experimental setup, will advance further development in the synthesis of zeolites with desired properties.  相似文献   

8.
Extra‐large‐pore zeolites have attracted much interest because of their important applications for processing larger molecules. Although great progress has been made in academic science and industry, it is challenging to synthesize these materials. A new extra‐large‐pore zeolite SYSU‐3 (Sun Yat‐sen University no. 3) has been synthesized by using a novel sophoridine derivative as an organic structure‐directing agent (OSDA). The framework structure was solved and refined using continuous rotation electron diffraction (cRED) data from nanosized crystals. SYSU‐3 exhibits a new zeolite framework topology, which has the first 24×8×8‐ring extra‐large‐pore system and a framework density (FD) as low as 11.4 T/1000 Å3. The unique skeleton of the OSDA plays an essential role in the formation of the distinctive zeolite structure. This work provides a new perspective for developing new zeolitic materials by using alkaloids as cost‐effective OSDAs.  相似文献   

9.
Extra‐large‐pore zeolites for processing large molecules have long been sought after by both the academia and industry. However, the synthesis of these materials, particularly extra‐large‐pore pure silica zeolites, remains a big challenge. Herein we report the synthesis of a new extra‐large‐pore silica zeolite, designated NUD‐6, by using an easily synthesized aromatic organic cation as structure‐directing agent. NUD‐6 possesses an intersecting 16×8×8‐membered ring pore channel system constructed by four‐connected (Q4) and unusual three‐connected (Q3) silicon species. The organic cations in NUD‐6 can be removed in nitric acid to yield a porous material with high surface area and pore volume. The synthesis of NUD‐6 presents a feasible means to prepare extra‐large pore silica zeolites by using assembled aromatic organic cations as structure‐directing agents.  相似文献   

10.
Nanoscale crystal growth control is crucial for tailoring two‐dimensional (2D) zeolites (crystallites with thickness less than two unit cells) and thicker zeolite nanosheets for applications in separation membranes and as hierarchical catalysts. However, methods to control zeolite crystal growth with nanometer precision are still in their infancy. Herein, we report solution‐based growth conditions leading to anisotropic epitaxial growth of 2D zeolites with rates as low as few nanometers per day. Contributions from misoriented surface nucleation and rotational intergrowths are eliminated. Growth monitoring at the single‐unit‐cell level reveals novel nanoscale crystal‐growth phenomena associated with the lateral size and surface curvature of 2D zeolites.  相似文献   

11.
《化学:亚洲杂志》2017,12(10):1043-1047
High‐silica RHO zeolite was directly synthesized using an alkali metal‐crown ether (AMCE) complex as organic structure‐directing agent (OSDA). Derived from the UV‐vis spectra and zeolite patterns, the crown ether‐cesium cation interaction was found to have crucial effect on the enhancement of silica content within the zeolite framework. The synthesized RHO zeolites possess up to four times larger silica/alumina ratio (SAR) values than that in their conventional form, which gives them extraordinarily rigid frameworks even after hydrothermal aging under 800 °C. Compared to commercial zeolites, copper‐exchanged high‐silica RHO zeolites demonstrate considerably high reaction activity in NOX removal, making them promising candidates for diesel exhaust treatment.  相似文献   

12.
Porous crystalline materials such as zeolites, metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) have attracted great interest due to their well-defined pore structures in molecular dimensions. Knowing the atomic structures of porous materials is crucial for understanding their properties and exploring their applications. Many porous materials are synthesized as polycrystalline powders, which are too small for structure determination by X-ray diffraction. Three-dimensional electron diffraction (3DED) has been developed for studying such materials. In this Minireview, we summarize the recent developments of 3DED methods and demonstrate how 3DED revolutionized structural analysis of zeolites, MOFs, and COFs. Zeolites and MOFs whose structures remained unknown for decades could be solved. New approaches for design and targeted synthesis of novel zeolites could be developed. Moreover, we discuss the advances of structural analysis by 3DED in revealing the unique structural features and properties, such as heteroatom distributions, mixed-metal frameworks, structural flexibility, guest–host interactions, and structure transformation.

Three-dimensional electron diffraction is a powerful tool for accurate structure determination of zeolite, MOF, and COF crystals that are too small for X-ray diffraction. By revealing the structural details, the properties of the materials can be understood, and new materials and applications can be designed.  相似文献   

13.
Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure‐directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneable surface area and micropore volume over a wide range can be prepared. This means that a particular surface area or micropore volume can be precisely tuned. The range of porosity we can target covers the whole range of useful zeolite porosity: from small pores consisting of 8‐rings all the way to extra‐large pores consisting of 14‐rings.  相似文献   

14.
A conceptual design and synthesis of ordered mesoporous zeolites is a challenging research subject in material science. Several seminal articles report that one‐dimensional (1D) mesostructured lamellar zeolites are possibly directed by sheet‐assembly of surfactants, which collapse after removal of intercalated surfactants. However, except for one example of two‐dimensional (2D) hexagonal mesoporous zeolite, no other zeolites with ordered 2D or three‐dimensional (3D) mesostructures have been reported. An ordered 2D mesoporous zeolite can be templated by a cylindrical assembly unit with specific interactions in the hydrophobic part. A template molecule with azobenzene in the hydrophobic tail and diquaternary ammonium in the hydrophilic head group directs hierarchical MFI zeolite with a 2D square mesostructure. The material has an elongated octahedral morphology, and quaternary, ordered, straight, square channels framed by MFI thin sheets expanded along the ac planes and joined with 90° rotations. The structural matching between the cylindrical assembly unit and zeolite framework is crucial for mesostructure construction.  相似文献   

15.
A new series of multiquaternary ammonium structure‐directing agents, based on 1,4‐diazabicyclo[2.2.2]octane, was prepared. ZSM‐5 zeolites with nanosheet morphology (10 nm crystal thickness) were synthesized under hydrothermal conditions using multiquaternary ammonium surfactants as the zeolite structure‐generating agents. Both wide‐angle and small‐angle diffraction patterns were obtained using only a suitable structure‐directing agent under a specific zeolite synthesis composition. A mechanism of zeolite formation is proposed based on the results obtained from various physicochemical characterizations. ZSM‐5 materials were investigated in catalytic reactions requiring medium to strong acidity, which are important for the synthesis of a wide range of industrially important fine and specialty chemicals. The catalytic activity of ZSM‐5 materials was compared with that of the conventional ZSM‐5 and amorphous mesoporous aluminosilicate Al‐MCM‐41. The synthesis strategy of the present investigation using the new series of structure‐directing agents could be extended for the synthesis of other related zeolites or other porous materials in the future. Zeolite with a structural feature as small as the size of a unit cell (5–10 nm) with hierarchically ordered porous structure would be very promising for catalysis.  相似文献   

16.
Understanding structure–composition–property relationships in zeolite‐based materials is critical to engineering improved solid catalysts. However, this can be difficult to realize as even single zeolite crystals can exhibit heterogeneities spanning several orders of magnitude, with consequences for, for example, reactivity, diffusion as well as stability. Great progress has been made in characterizing these porous solids using tomographic techniques, though each method has an ultimate spatial resolution limitation. Atom probe tomography (APT) is the only technique so far capable of producing 3D compositional reconstructions with sub‐nanometer‐scale resolution, and has only recently been applied to zeolite‐based catalysts. Herein, we discuss the use of APT to study zeolites, including the critical aspects of sample preparation, data collection, assignment of mass spectral peaks including the predominant CO peak, the limitations of spatial resolution for the recovery of crystallographic information, and proper data analysis. All sections are illustrated with examples from recent literature, as well as previously unpublished data and analyses to demonstrate practical strategies to overcome potential pitfalls in applying APT to zeolites, thereby highlighting new insights gained from the APT method.  相似文献   

17.
Nanometer‐sized zeolite A with a large cesium (Cs) uptake capability is prepared through a simple post‐milling recrystallization method. This method is suitable for producing nanometer‐sized zeolite in large scale, as additional organic compounds are not needed to control zeolite nucleation and crystal growth. Herein, we perform a quartz crystal microbalance (QCM) study to evaluate the uptake ability of Cs ions by zeolite, to the best of our knowledge, for the first time. In comparison to micrometer‐sized zeolite A, nanometer‐sized zeolite A can rapidly accommodate a larger amount of Cs ions into the zeolite crystal structure, owing to its high external surface area. Nanometer‐sized zeolite is a promising candidate for the removal of radioactive Cs ions from polluted water. Our QCM study on Cs adsorption uptake behavior provides the information of adsorption kinetics (e.g., adsorption amounts and rates). This technique is applicable to other zeolites, which will be highly valuable for further consideration of radioactive Cs removal in the future.  相似文献   

18.
The development of inorganic frameworks with extra‐large pores (larger than 12‐membered rings) has attracted considerable attention because of their potential applications in catalysis, the separation of large molecules, and so forth. We herein report the synthesis of the new extra‐large‐pore zeolite NUD‐2 by using the supramolecular self‐assembly of simple aromatic organic cations as structure‐directing agents (SDAs). NUD‐2 is a high‐silicon‐content germanosilicate with interconnecting 14×10‐membered‐ring channels. The SDAs in NUD‐2 can be removed by calcination in air at 550 °C to yield permanent pores with a BET surface area of 500 m2g?1. Both germanium and organic cations in NUD‐2 can also be removed by treatment with acid at lower temperature, thus not only affording recycling of germanium and SDAs, but also providing a highly stable siliceous zeolite. In addition, aluminum ions can be incorporated into the framework of NUD‐2. The NUD‐2 structure is yet another extra‐large‐pore zeolite synthesized by using the supramolecular self‐assembling templating approach, thus demonstrating that this approach is a general and applicable strategy for synthesis of new large‐ and extra‐large‐pore zeolites.  相似文献   

19.
Novel hierarchical Beta zeolites have been successfully synthesized via a one‐pot dual‐templates strategy utilizing gemini organic surfactant and tetraethylammonium hydroxide (TEAOH)through hydrothermal process. The influence of several parameters on the formation of hierarchical Beta zeolite, the change in acidity and a possible growth scheme were systematically investigated. The physicochemical properties of these catalysts were characterized by PXRD, BET, SEM, HRTEM SAED, TG and NH3‐TPD techniques, and the performance as acid catalysts was verified using the transformation of EtOH as a model reaction. On one hand, WAXRD data indicated that decreasing the temperature of synthesis and increasing amounts of C12‐6‐12 in the process of synthesis resulted in lower crystallinity of Beta zeolites due to the BEA nuclei formation and crystal growth constrained by C12‐6‐12. On the other hand, SAXRD and HRTEM data evidenced that C12‐6‐12 initially generated a pseudo‐ordered mesoporous phase which was then partially occupied by the zeolite. After a period of ~96 h for crystallization, the hierarchy zeolite possessing 765.7 m2·g‐1 of Brunauer‐Emmett‐Tellerarea, and average mesopore size distribution of 3.51 nm can be synthesized, and its microporous structure has a good crystallinity and lower amounts of acid sites than that of the microporous Beta one. Furthermore, the as‐obtained hierarchical zeolite displayed lower deactivation rate mainly due to the less coke formation on the surface of catalyst. It is expected to develop more considerable potential application value for the hierarchical Beta zeolite structure in the near future.  相似文献   

20.
Incorporation of semiconductor property into zeolite materials is a plausible approach to graft oxide zeolites with multifunctionality in which both electronic/optoelectronic functions and high porosity are integrated. However, creating such semiconductor zeolites, especially the ones with controllable function regulation still remains as a great synthetic challenge over the years. Hereby, we reported the first case of an interrupted chalcogenide‐based zeolite‐analog semiconductor with an entirely new boracite‐related framework and specific sites at the interrupted section. The semiconducting nature and band structure of this open‐framework n‐type semiconductor material were characterized with solid‐state UV/Vis diffuse reflectance spectroscopy and Mott–Schottky measurements. More importantly, the In–Se chalcogenide zeolite analog was for the first time explored as an effective electrocatalyst for the oxygen reduction reaction (ORR). The specific indium sites served as active centers and proved to be responsible for a superior ORR activity. Meanwhile, these specific sites could be precisely replaced by bismuth(III) ions, leading to facile manipulation in their electro‐/photoelectrochemical properties. Such atomically precise doping successfully implemented at the semiconductor zeolite material with specifically interrupted sites presents a very promising route for accurately regulating electronic structure and photoelectrical properties of other open‐framework semiconductor materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号