首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While many metal oxalate salts are known, few are known to form zeolite‐type topologies. The construction of zeolite types, especially those with low framework density such as RHO, from linear ligands is generally perceived as less likely, because the 180° metal‐ligand‐metal geometry deviates too much from the established strategy of using ligands with bent coordination geometry (centered around 145°) to mimic the geometry in natural zeolites. We show the general feasibility of using linear ligands for the synthesis of zeolite types by reporting a family of indium oxalate salts with multiple zeolite topologies, including RHO, GIS, and ABW. Of particular interest is the synthesis of a zeolite RHO net with double 8‐rings and large alpha cages, which are highly desirable zeolite features.  相似文献   

2.
Characteristics of zeolite formation, such as being kinetically slow and thermodynamically metastable, are the main bottlenecks that obstruct a fast zeolite synthesis. We present an ultrafast route, the first of its kind, to synthesize high‐silica zeolite SSZ‐13 in 10 min, instead of the several days usually required. Fast heating in a tubular reactor helps avoid thermal lag, and the synergistic effect of addition of a SSZ‐13 seed, choice of the proper aluminum source, and employment of high temperature prompted the crystallization. Thanks to the ultra‐short period of synthesis, we established a continuous‐flow preparation of SSZ‐13. The fast‐synthesized SSZ‐13, after copper‐ion exchange, exhibits outstanding performance in the ammonia selective catalytic reduction (NH3‐SCR) of nitrogen oxides (NOx), showing it to be a superior catalyst for NOx removal. Our results indicate that the formation of high‐silica zeolites can be extremely fast if bottlenecks are effectively widened.  相似文献   

3.
Dual‐mesoporous ZSM‐5 zeolite with highly b axis oriented large mesopores was synthesized by using nonionic copolymer F127 and cationic surfactant CTAB as co‐templates. The product contains two types of mesopores—smaller wormlike ones of 3.3 nm in size and highly oriented larger ones of 30–50 nm in diameter along the b axis—and both of them interpenetrate throughout the zeolite crystals and interconnect with zeolite microporosity. The dual‐mesoporous zeolite exhibits excellent catalytic performance in the condensation of benzaldehyde with ethanol and greater than 99 % selectivity for benzoin ethyl ether at room temperature, which can be ascribed to the zeolite lattice structure offering catalytically active sites and the hierarchical and oriented mesoporous structure providing fast access of reactants to these sites in the catalytic reaction. The excellent recyclability and high catalytic stability of the catalyst suggest prospective applications of such unique mesoporous zeolites in the chemical industry.  相似文献   

4.
Extra‐large‐pore zeolites for processing large molecules have long been sought after by both the academia and industry. However, the synthesis of these materials, particularly extra‐large‐pore pure silica zeolites, remains a big challenge. Herein we report the synthesis of a new extra‐large‐pore silica zeolite, designated NUD‐6, by using an easily synthesized aromatic organic cation as structure‐directing agent. NUD‐6 possesses an intersecting 16×8×8‐membered ring pore channel system constructed by four‐connected (Q4) and unusual three‐connected (Q3) silicon species. The organic cations in NUD‐6 can be removed in nitric acid to yield a porous material with high surface area and pore volume. The synthesis of NUD‐6 presents a feasible means to prepare extra‐large pore silica zeolites by using assembled aromatic organic cations as structure‐directing agents.  相似文献   

5.
From a technological point of view, the synthesis of new high‐silica zeolites is of prime importance owing to their high potential as industrial catalysts and catalyst supports. Two such materials have been synthesized which are made up of the 1,3‐stellated cubic unit (hexahedral ([4254]) bre unit) as a secondary building unit, with the aid of existing imidazolium‐based structure‐directing agents under “excess fluoride” conditions. One of them, denoted PST‐21, is the first aluminosilicate zeolite consisting of 9‐ring apertures solely; it displays exceptional activity towards steering the skeletal isomerization of 1‐butene to isobutene and bridges the gap between small‐ and medium‐pore structures. A series of hypothetical structures are also described that are nonjointly built from the bre unit; all of these structures are chemically feasible and will thus be helpful in designing the synthesis of novel zeolites containing 9‐ring and/or 10‐ring channels.  相似文献   

6.
Aluminosilicate zeolites are synthesized under hydrothermal conditions in a basic/alkaline medium in the pH range between 9 and 14. The synthesis of MFI-type zeolite in an acidic medium is presented. The critical parameter determining the zeolite formation in an acidic medium was found to be the isoelectric point (IEP) of gel particles. MFI-type zeolite was synthesized above the isoelectric point of the employed silica source, where the silica species exhibit a negative charge and the paradigm of zeolite formation based on the electrostatic interaction with the positively charged template is retained. No zeolite formation is observed below the isoelectric point of silica. The impact of aluminum on the zeolite formation is also studied. The results of this study will serve to extend the synthesis field of high silica zeolites to the acidic medium and thus open new opportunities to control the zeolite properties.  相似文献   

7.
Herein, we analyze earlier obtained and new data about peculiarities of the H/D hydrogen exchange of small C1n‐C4 alkanes on Zn‐modified high‐silica zeolites ZSM‐5 and BEA in comparison with the exchange for corresponding purely acidic forms of these zeolites. This allows us to identify an evident promoting effect of Zn on the activation of C? H bonds of alkanes by zeolite Brønsted sites. The effect of Zn is demonstrated by observing the regioselectivity of the H/D exchange for propane and n‐butane as well as by the increase in the rate and a decrease in the apparent activation energy of the exchange for all C1n‐C4 alkanes upon modification of zeolites with Zn. The influence of Zn on alkane activation has been rationalized by dissociative adsorption of alkanes on Zn oxide species inside zeolite pores, which precedes the interaction of alkane with Brønsted acid sites.  相似文献   

8.
New crown ether carrying two fluorionophores of cis‐dibenzothiazolyldibenzo‐24‐crown‐8 was synthesized from cis‐diformyldibenzo‐24‐crown‐8 and 2‐aminobenzenethiol. The binding behavior and the optical properties of the crown ether were examined through UV‐visible spectroscopy and fluorescence spectroscopy. When complexed with Na+, K+, Rb+, and Cs+ ions, it led to intramolecular charge transfer and caused the changes of the fluorescence spectra. The protonation of the crown ether was also studied. With protonation using CF3COOH, the absorption bands and the fluorescence spectroscopy changed, the maximal fluorescence wavelengths red shifted and the fluorescence intensity with the maximum at 433 nm enhanced strongly. J. Heterocyclic Chem., (2011).  相似文献   

9.
Currently, the synthesis of pure silica zeolites always requires the presence of organic structure‐directing agents (OSDAs), which direct the assembly pathway and ultimately fill the pore space. A sustainable route is now reported for synthesizing pure silica zeolites in the absence of OSDAs from a combined strategy of zeolite seeding and alcohol filling, where the zeolite seeds direct crystallization of zeolite crystals from amorphous silica, while the alcohol is served as pore filling in the zeolites. Very importantly, the alcohol could be fully washed out from zeolite pores by water at room temperature, which completely avoids calcination at high temperature for removal of OSDAs in the synthesis of pure silica zeolites.  相似文献   

10.
A novel terminal‐vinyl liquid crystal crown ether (2‐[4‐(3‐undeceny‐1‐yloxy)‐phenyl]‐2‐[4′‐(4′‐carboxybenzo‐15‐crown‐5)‐phenyl] propane) (LCCE) was synthesized and used to modify hybrid silica‐based monolithic column possessing vinyl ligands for CEC. The monolithic silica matrix containing vinyl functionalities was prepared by in situ co‐condensation of tetramethoxysilane and vinyl‐trimethoxysilane via sol–gel process and chemically modified with LCCE by free radical polymerization procedure using α,α'‐azobisisobutyronitrile as an initiator. Morphology of the monolithic column was examined by SEM and mercury porosimetry and the successful incorporation of terminal‐vinyl LCCE to the vinyl‐hybrid monolith was characterized by infrared spectra. Polycyclic aromatic hydrocarbons, benzenediols, carbamate pesticides and steroids, were successfully separated on the column. The separations were dominated hydrogen bonding supplied by crown ether and hydrophobic interaction offered by the liquid crystal. The effect of ACN concentration on separation performance was studied and the result indicated that RP retention mechanism played an important role. Reproducibilities of migration times for the six selected polycyclic aromatic hydrocarbons were reasonable, with relative standard deviation less than 3.50% for five consecutive within‐column runs and were 8.38–9.11% for column‐to‐column measurements of three columns.  相似文献   

11.
Summary: A new diamine monomer containing a crown ether was made to react with commercial diacid chlorides and dianhydrides to yield new aromatic polyamides and polyimides. The crown ether moiety was introduced as a pendant group so that the polymers showed enhanced solubility in organic solvents, good thermal properties (high transition temperatures and high thermal stability), and good film‐forming ability.

The new aromatic polyamides and polyimides bearing a benzo‐15‐crown‐5‐pendant group synthesized here.  相似文献   


12.
Siliceous zeolites are ideally suited for emerging applications in gas separations, sensors, and the next generation of low‐k dielectric materials, but the use of fluoride in the synthesis significantly hinders their commercialization. Herein, we show that the dry gel conversion (DGC) technique can overcome this problem. Fluoride‐free synthesis of two siliceous zeolites—AMH‐4 (CHA‐type) and AMH‐5 (STT‐type), has been achieved for the first time using the method. Siliceous *BEA‐, MFI‐, and *MRE‐type zeolites have also been synthesized to obtain insights into the crystallization process. Charge‐balancing interactions between the inorganic cation, organic structure‐directing agent (OSDA), and Si?O? defects are found to be an essential aspect. We quantify this factor in terms of the “OSDA charge/silica ratio” of the as‐made zeolites and demonstrate that the DGC technique is broadly applicable and opens up new avenues for fluoride‐free siliceous zeolite synthesis.  相似文献   

13.
A novel structural coding approach combining structure solution, prediction, and the targeted synthesis of new zeolites with expanding complexity and embedded isoreticular structures was recently proposed. Using this approach, the structures of two new zeolites in the RHO family, PST‐20 and PST‐25, were predicted and synthesized. Herein, by extending this approach, the next two higher generation members of this family, PST‐26 and PST‐28, have been predicted and synthesized. These two zeolites have much larger unit cell volumes (422 655 Å3 and 614 912 Å3, respectively) than those of the lower generations. Their crystallization was confirmed by a combination of both powder X‐ray and electron diffraction techniques. Aluminate and water concentrations in the synthetic mixture were found to be the two most critical factors influencing the structural expansion of embedded isoreticular zeolites under the synthetic conditions studied herein.  相似文献   

14.
Novel hierarchical Beta zeolites have been successfully synthesized via a one‐pot dual‐templates strategy utilizing gemini organic surfactant and tetraethylammonium hydroxide (TEAOH)through hydrothermal process. The influence of several parameters on the formation of hierarchical Beta zeolite, the change in acidity and a possible growth scheme were systematically investigated. The physicochemical properties of these catalysts were characterized by PXRD, BET, SEM, HRTEM SAED, TG and NH3‐TPD techniques, and the performance as acid catalysts was verified using the transformation of EtOH as a model reaction. On one hand, WAXRD data indicated that decreasing the temperature of synthesis and increasing amounts of C12‐6‐12 in the process of synthesis resulted in lower crystallinity of Beta zeolites due to the BEA nuclei formation and crystal growth constrained by C12‐6‐12. On the other hand, SAXRD and HRTEM data evidenced that C12‐6‐12 initially generated a pseudo‐ordered mesoporous phase which was then partially occupied by the zeolite. After a period of ~96 h for crystallization, the hierarchy zeolite possessing 765.7 m2·g‐1 of Brunauer‐Emmett‐Tellerarea, and average mesopore size distribution of 3.51 nm can be synthesized, and its microporous structure has a good crystallinity and lower amounts of acid sites than that of the microporous Beta one. Furthermore, the as‐obtained hierarchical zeolite displayed lower deactivation rate mainly due to the less coke formation on the surface of catalyst. It is expected to develop more considerable potential application value for the hierarchical Beta zeolite structure in the near future.  相似文献   

15.
Macrocyclic polyethers containing a cholesteryl moiety, e.g., cholesteryl benzo‐15‐crown‐5 (C27H45OOC‐B15C5) and cholesteryl cryptand22 (C27H45OOC‐Cryptand22), were synthesized. The cholesteryl crown ether C27H45OOC‐B15C5 showed liquid crystal characteristics which were observed by polarizing microscopy. In contrast, the cholesteryl cryptand C27H45OOC‐Cryptand22 showed no liquid crystal characteristics. The doping effect of inorganic salts on the liquid crystal formation of cholesteryl benzo‐15‐crown‐5 was also investigated, revealing that the addition of salts resulted in narrower liquid crystal temperature ranges. Both cholesteryl cryptand C27H45OOC‐Cryptand22 and cholesteryl crown ether C27H45OOC‐B15C5 also exhibited the distinctive characteristics of surfactants in solutions. Fluorescence probe of pyrene and surface tension measurement were applied as sensitive tools to study the formation of the micelles and determine the critical micellar concentration (CMC) of the cholesteryl cryptand and crown ether surfactants. The salt effect on the CMC of the cholesteryl cryptand surfactant was also investigated and is discussed. Furthermore, the cholesteryl benzo‐15‐crown‐5 was successfully employed as a quite good phase transfer catalyst for the oxidation of alcohols, e.g., benzhydrol, with NaMnO4 as an oxidant. Effects of temperature, solvent and concentration of the crown ether catalyst on the oxidation of benzhydrol were also investigated.  相似文献   

16.
Two novel types of crown ether capped β‐cyclodextrin (β‐CD) bonded silica, namely, 4′‐aminobenzo‐X‐crown‐Y (X=15, 18 and Y=5, 6, resp.) capped [3‐(2‐O‐β‐cyclodextrin)‐2‐hydroxypropoxy] propylsilyl‐appended silica, have been prepared and used as stationary phases in capillary electrochromatography (CEC) to separate chiral compounds. The two stationary phases have a chiral selector with two recognition sites: crown ether and β‐CD. They exhibit excellent enantioselectivity in CEC for a wide range of compounds. After inclusion of metal ions (Na+ or K+) from the running buffer into the crown ether units, the stationary phases become positively charged and can provide extra electrostatic interaction with ionizable solutes and enhance the dipolar interaction with polar neutral solutes. This enhances the host‐guest interaction with the solute and improves chiral recognition and enantioselectivity. Due to the cooperation of the anchored β‐CD and the crown ether, this kind of crown ether capped β‐CD bonded phase shows better enantioselectivity than either β‐CD‐ or crown ether bonded phases only. These new types of stationary phases have good potential for fast chiral separation with CEC.  相似文献   

17.
Gamma‐ray (γ‐ray) irradiation was introduced into zeolite synthesis. The crystallization process of zeolite NaA, NaY, Silicalite‐1, and ZSM‐5 were greatly accelerated. The crystallization time of NaA zeolite was significantly decreased to 18 h under γ‐ray irradiation at 20 °C, while more than 102 h was needed for the conventional process. Unexpectedly, more mesopores were created during this process, and thus the adsorption capacity of CO2 increased by 6‐fold compared to the NaA prepared without γ‐ray irradiation. Solid experimental evidence and density function theory (DFT) calculations demonstrated that hydroxyl free radicals (OH*) generated by γ‐rays accelerated the crystallization of zeolite NaA. Besides NaA, mesoporous ZSM‐5 with MFI topology was also successfully synthesized under γ‐ray irradiation, which possessed excellent catalytic performance for methanol conversion, suggesting the universality of this new synthetic strategy for various zeolites.  相似文献   

18.
《化学:亚洲杂志》2017,12(5):530-542
The seed‐assisted synthesis of zeolites without using organic structure‐directing agents (OSDAs) has enabled alternative routes to the simple, environmentally friendly and low‐cost production of industrially important zeolites. In this study, the successful seed‐assisted synthesis of MCM‐22 (MWW‐type) zeolite with an OSDA‐free gel is reported for the first time. MWW‐type zeolites are obtained by the addition of as‐synthesized MCM‐22 seeds prepared with hexamethyleneimine (HMI) into OSDA‐free Na‐aluminosilicate gels. Based on the results of XRD, ICP‐AES, NMR, N2 physisorption and NH3‐TPD, the product exhibited different features compared to those of the seeds. The H‐form product can serve as a catalyst in Friedel–Crafts alkylation reaction of anisole with 1‐phenylethanol, and its catalytic activity is comparable to the seeds. Furthermore, XRD, FE‐SEM, TG‐DTA, CHN, FT‐IR and NMR analyses of products and intermediates provide insights into the role of seeds and occluded HMI, the crystallization process, and key factors for achieving seed‐assisted synthesis of MWW‐type zeolites with an OSDA‐free gel system. The present results provide a new perspective for the economical and environmentally friendly production of MWW‐type zeolites.  相似文献   

19.
Novel and innovative hierarchical analcime zeolites were prepared by adding a gemini surfactant which acted as a dual‐functional template. Through a one‐step hydrothermal process, a hierarchical analcime zeolite with abundant intracrystalline mesopores was synthesized. Powder X‐ray diffraction and N2 adsorption–desorption data show that the mesoporous composites possess both a quite a number of mesopores and analcime structure. The results suggest that the dual‐functional template can be effective in the synthesis of hierarchical analcime zeolites.  相似文献   

20.
An amine‐appended hierarchical Ca‐A zeolite that can selectively capture CO2 was synthesized and incorporated into inexpensive membrane polymers, in particular polyethylene oxide and Matrimid, to design mixed‐matrix membranes with high CO2/CH4 selectivities. Binary mixture permeation testing reveals that amine‐appended mesoporous Ca‐A is highly effective in improving CO2/CH4 selectivity of polymeric membranes. In particular, the CO2/CH4 selectivity of the polyethylene oxide membrane increases from 15 to 23 by incorporating 20 wt % amine‐appended Ca‐A zeolite. Furthermore, the formation of filler/polymer interfacial defects, which is typically found in glassy polymer‐zeolite pairs, is inhibited owing to the interaction between the amine groups on the external surface of zeolites and polymer chains. Our results suggest that the amine‐appended hierarchial Ca‐A, which was utilized in membrane fabrication for the first time, is a good filler material for fabricating a CO2‐selective mixed‐matrix membrane with defect‐free morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号