首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four kinds of Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 content have been prepared on BK7 substrates by electron-beam evaporation method. Structural properties and surface morphology of thin films were investigated by X-ray diffraction (XRD) spectra and scanning probe microscope. Laser induced damage threshold (LIDT) was determined. It was found that crystalline phase and microstructure of YSZ thin films was dependent on Y2O3 molar content. YSZ thin films changed from monoclinic phase to high temperature phase (tetragonal and cubic) with the increase of Y2O3 content. The LIDT of stabilized thin film is more than that of unstabilized thin films. The reason is that ZrO2 material undergoes phase transition during the course of e-beam evaporation resulting in more numbers of defects compared to that of YSZ thin films. These defects act as absorptive center and the original breakdown points.  相似文献   

2.
Four kinds of Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 contents (from 0 to 12 mol%) are deposited on BK7 glass substrates by electron-beam evaporation method. The effects of different Y2O3 dopant contents on residual stress, structure, and optical properties of ZrO2 thin films are investigated. The results show that residual stress in YSZ thin films varies from tensile to compressive with the increase of Y2O3 molar content. The addition of Y2O3 is beneficial to the crystallization of YSZ thin film and transformation from amorphous to high temperature phase, and the refractive index decreases with the increase of Y2O3 molar content. Moreover, the variations of residual stress and the shifts of refractive index correspond to the evolution of structures induced by the addition of Y2O3.  相似文献   

3.
HfO2 films are deposited on BK7 glass substrates by electron beam evaporation. The influences of annealing between 100℃ and 400℃ on residual stresses and structures of HfO2 films are studied. It is found that little differences of spectra, residual stresses and structures are obtained after annealing at lower temperatures. After annealing at higher temperatures, the spectra shift to short wavelength, the residual stress increases with the increasing annealing temperature. At the same time, the crystallite size increases and interplanar distance decreases. The variations of optical spectra and residual stress correspond to the evolutions of structures induced by annealing.  相似文献   

4.
Y2O3 thin films were grown on silicon (1 0 0) substrates by pulsed-laser deposition at different substrate temperatures and O2 pressures. The structure and composition of films are studied by using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Y2O3 thin films deposited in vacuum strongly oriented their [1 1 1] axis of the cubic structure and the film quality depended on the substrate temperature. The magnitude of O2 pressure obviously influences the film structure and quality. Due to the silicon diffusion and interface reaction during the deposition, yttrium silicate and SiO2 were formed. The strong relationship between composition and growth condition was discussed.  相似文献   

5.
Thin Y2O3 films have been grown on (100) Si using an in-situ ultraviolet-assisted pulsed laser deposition (UVPLD) technique. When compared to conventional pulsed laser deposited (PLD) films under similar conditions, the UVPLD-grown films exhibited better structural and optical properties, especially those grown at lower substrate temperatures, from 200 °C to 400 °C. X-ray diffraction investigations showed that the films grown were highly crystalline and textured. According to X-ray photoelectron spectroscopy and Rutherford backscattering spectrometry investigations, UVPLD-grown Y2O3 films have a better overall stoichiometry and contain less physisorbed oxygen than the conventional PLD-grown films. The refractive index values, measured in the range 300-750 nm by using variable-angle spectroscopic ellipsometry, were similar to those of a reference Y2O3 film.  相似文献   

6.
Bi3.25La0.75 Ti3O12 (BLT) ferroelectric thin films are deposited by sol-gel method and annealed for crystallizaion in total l eccm N2/02 mixed gas with various ratio at 750℃ for 30rain. The effect of crystallization ambient on the structural and ferroelectric properties of the BLT films is studied. The growth direction and grain size of BLT film are revealed to affect ferroeleetric properties. Alter the BLT film is annealed in 20%O2, the largest P~ value is obtained, which is ascribed to an increase of random orientation and large grain size. The fatigue property is improved with the concentration of oxygen in the ambient increasing, which is ascribed to annealing in the ambient with high concentrated oxygen adequately decreasing the defects related to lack of oxygen.  相似文献   

7.
The effects of working pressure on properties of Al2O3 thin films are investigated. Transmittance of the Al2O3 thin film is measured by a Lambda 900 spectrometer. Laser-induced damage threshold (LIDT) is measured by a Nd:YAG laser at 355 nm with a pulse width of 7ns. Microdefects were observed under a Nomarski microscope. The samples are characterized by optical properties and defect, as well as LIDT under the 355 nm Nd:YAG laser radiation. It is found that the working pressure has fundamental effect on the LIDT. It is the absorption rather than the microdefect that plays an important role on the LIDT of Al2O3 thin film.  相似文献   

8.
The influence of lithium doping on the crystallization, the surface morphology, and the luminescent properties of pulsed laser deposited Y2−xGdxO3:Eu3+ thin film phosphors was investigated. The crystallinity, the surface morphology, and the photoluminescence (PL) of films depended highly on the Li-doping and the Gd content. The relationship between the crystalline and morphological structures and the luminescent properties was studied, and Li+ doping was found to effectively enhance not only the crystallinity but also the luminescent brightness of Y2−xGdxO3:Eu3+ thin films. In particular, the incorporation of Li and Gd into the Y2O3 lattice could induce remarkable increase in the PL. The highest emission intensity was observed Li-doped Y1.35Gd0.6O3:Eu3+ thin films whose brightness was increased by a factor of 4.6 in comparison with that of Li-doped Y2O3:Eu3+ thin films.  相似文献   

9.
Luminescence spectra of erbium ions doped in Y2O3-P2O5 thin films, with different P2O5 content (from 3% to 47%), were analysed with crystal-field Hamiltonian model with D2d symmetry including J-mixing effect. The empirical crystal-field parameters (CFPs) obtained for the best fit of calculated to experimental energy levels allows us to confirm the well-established YPO4 phase for 47% of P2O5. The CFPs are compared to those calculated for Ce3+, Nd3+ and Dy3+ in the YPO4 host. This work is a continuation of our previous results for erbium-doped Y2O3 thin films.  相似文献   

10.
This paper reports CeO2/YSZ/Y2O3 buffer layers deposited on biaxially textured NiW substrates by DC reactive sputtering in a reel-to-reel system. The effect of partial pressure of water vapor (PH2O) on surface morphology and orientation of the Y2O3 films was examined. The obtained CeO2/YSZ/Y2O3 buffer layers exhibit a highly biaxial texture, with in- and out-of-plane FWHM values respectively in the range of 6.0–7.0° and 4.5–5.5°. Crystallographic consistency of CeO2/YSZ/Y2O3 along meter length is excellent. Atomic force microscope observation (AFM) reveals a smooth, continuous and crack-free surface with a Root-mean-square roughness (RMS) lower than 10 nm.  相似文献   

11.
The growth of SmBa2Cu3O7-x superconducting thin films by off-axis pulsed laser deposition on different substrates (SrTiO3, MgO, LaAlO3, and YSZ) has been analyzed by means of resistance vs. temperature and X-ray diffraction measurements. The onset and width of the resistive transition depend on the substrate type and are in the ranges (89-80) K and (1-9) K, respectively. X-ray diffraction spectra show only the 00l reflections, from which the lattice parameter c can be estimated. Moreover, the rocking curves of the 005 peaks give an indication of the films' crystallinity and oxygen stoichiometry.  相似文献   

12.
Microstructure and magnetic properties of crystalline Ce1Y2Fe5O12 thin films prepared on GGG and on SiO2/Si substrates by pulsed laser deposition were studied. The results show that highly textured Ce1Y2Fe5O12 film with (4 4 4) preferred orientation prepared on GGG (1 1 1) shows strong paramagnetism superimposed by a weak ferromagnetism. However, polycrystalline Ce1Y2Fe5O12 thin films on SiO2/Si, which can only be obtained after post-annealing, show strong ferromagnetism with easy axis of magnetization lying in the plane of the film. With post-annealing temperature increasing, CeO2 segregates from Ce1Y2Fe5O12; then YIG continues to be decomposed, forming Fe2O3. Consequently, the saturation magnetization of Ce1Y2Fe5O12 films decreases first and then increases correspondingly, which indicates that the magnetic properties of Ce1Y2Fe5O12 films are mainly related to the microstructure.  相似文献   

13.
We describe the deposition and characterization of Bi12SiO20 (bismuth silicon oxide; BSO) thin films on Y-stabilized zirconia (YSZ) and SiO2 glass substrates by pulsed-laser deposition (PLD) for the application of an electric field sensor. It was found that all films deposited on YSZ substrates heated at 400 °C and more were crystallized and the (310) plane was perpendicular to the substrate normal. The highly (310) oriented crystallized films were even deposited on SiO2 glass substrates, and this will make it possible to grow the crystallized films on the end surface of a SiO2 glass fiber.  相似文献   

14.
Ta2O5 films are prepared on Si, BK7, fused silica, antireflection (AR) and high reflector (HR) substrates by electron beam evaporation method, respectively. Both the optical property and laser induced damage thresholds (LIDTs) at 1064 nm of Ta2O5 films on different substrates are investigated before and after annealing at 673 K for 12 h. It is shown that annealing increases the refractive index and decreases the extinction index, and improves the O/Ta ratio of the Ta2O5 films from 2.42 to 2.50. Moreover, the results show that the LIDTs of the Ta2O5 films are mainly correlated with three parameters: substrate property, substoichiometry defect in the films and impurity defect at the interface between the substrate and the films. Details of the laser induced damage models in different cases are discussed.  相似文献   

15.
TiO2 thin films were prepared by electron beam evaporation at different oxygen partial pressures. The influences of oxygen partial pressure on optical, mechanical and structural properties of TiO2 thin films were studied. The results showed that with the increase of oxygen partial pressure, the optical transmittance gradually increased, the transmittance edge gradually shifted to short wavelength, and the corresponding refractive index decreased. The residual stresses of all samples were tensile, and the value increased as oxygen partial pressure increasing, which corresponded to the evolutions of the packing densities. The structures of TiO2 thin films all were amorphous because deposition particles did not possess enough energy to crystallize.  相似文献   

16.
La0.8Sr0.2AlO3 (LSAO) thin films are grown on SrTiO3 (STO) and MgO substrates by laser molecular beam epitaxy. The LSAO thin film on oxygen deficient STO substrate exhibits metallic behaviour over the temperature range of 80--340K. The optical transmittance spectrum indicates that theLSAO thin films on MgO substrate are insulating at room temperature. The transport properties of LSAO thin films on STO substrates deposited in different oxygen pressure are compared. Our results indicate that oxygen vacancies in STO substrates should be mainly responsible for the transport behaviour of LSAO thin films.  相似文献   

17.
Epitaxial SrBi2Ta2O9 (SBT) thin films with well-defined (116) orientation have been grown by pulsed laser deposition on Si(100) substrates covered with an yttria-stabilized ZrO2 (YSZ) buffer layer and an epitaxial layer of electrically conductive SrRuO3. Studies on the in-plane crystallographic relations between SrRuO3 and YSZ revealed a rectangle-on-cube epitaxy with respect to the substrate. X-ray diffraction pole figure measurements revealed well-defined orientation relations, viz. SBT(116)SrRuO3(110)YSZ(100)Si(100), SBT[110]SrRuO3[001], and SrRuO3[111]YSZ[110]Si[110].  相似文献   

18.
ZrO2 thin films were prepared by electron beam evaporation at different oxygen partial pressures. The influences of oxygen partial pressure on structure and related properties of ZrO2 thin films were studied. Transmittance, thermal absorption, structure and residual stress of ZrO2 thin films were measured by spectrophotometer, surface thermal lensing technique (STL), X-ray diffraction and optical interferometer, respectively. The results showed that the structure and related properties varied progressively with the increase of oxygen partial pressure. The refractive indices and the packing densities of the thin films decreased when the oxygen partial pressure increased. The tetragonal phase fraction in the thin films decreased gradually as oxygen partial pressure increased. The residual stress of film deposited at base pressure was high compressive stress, the value decreased with the increase of oxygen partial pressure, and the residual stress became tensile with the further increase of oxygen pressure, which was corresponding to the evolution of packing densities and variation of interplanar distances.  相似文献   

19.
We investigated the effect of ion nitriding on the crystal structure of 3 mol% Y2O3-doped ZrO2 (3YSZ) thin-films prepared by the sol-gel method. For this purpose, we used X-ray diffractometry to determine the crystalline phases, the lattice parameters, the crystal sizes, and the lattice microstrains, and glow discharge-optical emission spectroscopy to obtain the depth profiles of the elemental chemical composition. We found that nitrogen atoms substitute oxygen atoms in the 3YSZ crystal, thus leading to the formation of unsaturated-substitutional solid solutions with reduced lattice parameters and Zr0.94Y0.06O1.72N0.17 stoichiometric formula. We also found that ion nitriding does not affect the grain size, but does generate lattice microstrains due to the increase in point defects in the crystalline lattice.  相似文献   

20.
Ta2O5 films axe deposited on fused silica substrates by conventional electron beam evaporation method. By annealing at different temperatures, Ta2 O5 films of amorphous, hexagonal and orthorhombic phases are obtained and confirmed by x-ray diffractometer (XRD) results. X-ray photoelectron spectroscopy (XPS) analysis shows that chemical composition of all the films is stoichiometry. It is found that the amorphous Ta2 O5 film achieves the highest laser induced damage threshold (LIDT) either at 355 or 1064nm, followed by hexagonal phase and finally orthorhombic phase. The damage morphologies at 355 and 1064nm are different as the former shows a uniform fused area while the latter is centred on one or more defect points, which is induced by different damage mechanisms. The decrease of the LIDT at 1064nm is attributed to the increasing structural defect, while at 355nm is due to the combination effect of the increasing structural defect and decreasing band gap energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号