首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
This paper deals with iterative gradient and subgradient methods with random feasibility steps for solving constrained convex minimization problems, where the constraint set is specified as the intersection of possibly infinitely many constraint sets. Each constraint set is assumed to be given as a level set of a convex but not necessarily differentiable function. The proposed algorithms are applicable to the situation where the whole constraint set of the problem is not known in advance, but it is rather learned in time through observations. Also, the algorithms are of interest for constrained optimization problems where the constraints are known but the number of constraints is either large or not finite. We analyze the proposed algorithm for the case when the objective function is differentiable with Lipschitz gradients and the case when the objective function is not necessarily differentiable. The behavior of the algorithm is investigated both for diminishing and non-diminishing stepsize values. The almost sure convergence to an optimal solution is established for diminishing stepsize. For non-diminishing stepsize, the error bounds are established for the expected distances of the weighted averages of the iterates from the constraint set, as well as for the expected sub-optimality of the function values along the weighted averages.  相似文献   

2.
A proximal-based decomposition method for convex minimization problems   总被引:10,自引:0,他引:10  
This paper presents a decomposition method for solving convex minimization problems. At each iteration, the algorithm computes two proximal steps in the dual variables and one proximal step in the primal variables. We derive this algorithm from Rockafellar's proximal method of multipliers, which involves an augmented Lagrangian with an additional quadratic proximal term. The algorithm preserves the good features of the proximal method of multipliers, with the additional advantage that it leads to a decoupling of the constraints, and is thus suitable for parallel implementation. We allow for computing approximately the proximal minimization steps and we prove that under mild assumptions on the problem's data, the method is globally convergent and at a linear rate. The method is compared with alternating direction type methods and applied to the particular case of minimizing a convex function over a finite intersection of closed convex sets.Corresponding author. Partially supported by Air Force Office of Scientific Research Grant 91-0008 and National Science Foundation Grant DMS-9201297.  相似文献   

3.
Shin-ya Matsushita  Li Xu 《Optimization》2016,65(11):2037-2047
In this paper we apply the Douglas–Rachford (DR) method to solve the problem of finding a point in the intersection of the interior of a closed convex cone and a closed convex set in an infinite-dimensional Hilbert space. For this purpose, we propose two variants of the DR method which can find a point in the intersection in a finite number of iterations. In order to analyse the finite termination of the methods, we use some properties of the metric projection and a result regarding the rate of convergence of fixed point iterations. As applications of the results, we propose the methods for solving the conic and semidefinite feasibility problems, which terminate at a solution in a finite number of iterations.  相似文献   

4.
The classical multi-set split feasibility problem seeks a point in the intersection of finitely many closed convex domain constraints, whose image under a linear mapping also lies in the intersection of finitely many closed convex range constraints. Split feasibility generalizes important inverse problems including convex feasibility, linear complementarity, and regression with constraint sets. When a feasible point does not exist, solution methods that proceed by minimizing a proximity function can be used to obtain optimal approximate solutions to the problem. We present an extension of the proximity function approach that generalizes the linear split feasibility problem to allow for non-linear mappings. Our algorithm is based on the principle of majorization–minimization, is amenable to quasi-Newton acceleration, and comes complete with convergence guarantees under mild assumptions. Furthermore, we show that the Euclidean norm appearing in the proximity function of the non-linear split feasibility problem can be replaced by arbitrary Bregman divergences. We explore several examples illustrating the merits of non-linear formulations over the linear case, with a focus on optimization for intensity-modulated radiation therapy.  相似文献   

5.
The convex feasibility problem asks to find a point in the intersection of finitely many closed convex sets in Euclidean space. This problem is of fundamental importance in the mathematical and physical sciences, and it can be solved algorithmically by the classical method of cyclic projections.In this paper, the case where one of the constraints is an obtuse cone is considered. Because the nonnegative orthant as well as the set of positive-semidefinite symmetric matrices form obtuse cones, we cover a large and substantial class of feasibility problems. Motivated by numerical experiments, the method of reflection-projection is proposed: it modifies the method of cyclic projections in that it replaces the projection onto the obtuse cone by the corresponding reflection.This new method is not covered by the standard frameworks of projection algorithms because of the reflection. The main result states that the method does converge to a solution whenever the underlying convex feasibility problem is consistent. As prototypical applications, we discuss in detail the implementation of two-set feasibility problems aiming to find a nonnegative [resp. positive semidefinite] solution to linear constraints in n [resp. in , the space of symmetric n×n matrices] and we report on numerical experiments. The behavior of the method for two inconsistent constraints is analyzed as well.  相似文献   

6.
The problem of designing a controller for a linear, discretetime system is formulated as a problem of designing an appropriate plant-state covariance matrix. Closed-loop stability and multiple-output performance constraints are expressed geometrically as requirements that the covariance matrix lies in the intersection of some specified closed, convex sets in the space of symmetric matrices. We solve a covariance feasibility problem to determine the existence and compute a covariance matrix to satisty assignability and output-norm performance constraints. In addition, we can treat a covariance optimization problem to construct an assignable covariance matrix which satisfies output performance constraints and is as close as possible to a given desired covariance. We can also treat inconsistent constraints, where we look for an assignable covariance which best approximates desired but unachievable output performance objectives; we call this the infeasible covariance optimization problem. All these problems are of a convex nature, and alternating convex projection methods are proposed to solve them, exploiting the geometric formulation of the problem. To this end, analytical expressions for the projections onto the covariance assignability and the output covariance inequality constraint sets are derived. Finally, the problem of designing low-order dynamic controllers using alternating projections is discussed, and a numerical technique using alternating projections is suggested for a solution, although convergence of the algorithm is not guaranteed in this case. A control design example for a fighter aircraft model illustrates the method.This research was completed while the first author was with the Space Systems Control Laboratory at Purdue University. Support from the Army Research Office Grant ARO-29029-EG is gratefully acknowledged.  相似文献   

7.
《Optimization》2012,61(11):2307-2320
We discuss accelerated version of the alternating projection method which can be applied to solve the linear matrix inequality (LMI) problem. The alternating projection method is a well-known algorithm for the convex feasibility problem, and has many generalizations and extensions. Bauschke and Kruk proposed a reflection projection algorithm for computing a point in the intersection of an obtuse cone and a closed convex set. We carry on this research in two directions. First, we present an accelerated version of the reflection projection algorithm, and prove its weak convergence in a Hilbert space; second, we prove the finite termination of an algorithm which is based on the proposed algorithm and provide an explicit upper bound for the required number of iterations under certain assumptions. Numerical experiments for the LMI problem are provided to demonstrate the effectiveness and merits of the proposed algorithms.  相似文献   

8.
Based on a new efficient identification technique of active constraints introduced in this paper, a new sequential systems of linear equations (SSLE) algorithm generating feasible iterates is proposed for solving nonlinear optimization problems with inequality constraints. In this paper, we introduce a new technique for constructing the system of linear equations, which recurs to a perturbation for the gradients of the constraint functions. At each iteration of the new algorithm, a feasible descent direction is obtained by solving only one system of linear equations without doing convex combination. To ensure the global convergence and avoid the Maratos effect, the algorithm needs to solve two additional reduced systems of linear equations with the same coefficient matrix after finite iterations. The proposed algorithm is proved to be globally and superlinearly convergent under some mild conditions. What distinguishes this algorithm from the previous feasible SSLE algorithms is that an improving direction is obtained easily and the computation cost of generating a new iterate is reduced. Finally, a preliminary implementation has been tested.  相似文献   

9.
The subject of this paper is to study the problem of the minimum distance to the complement of a convex set. Nirenberg has stated a duality theorem treating the minimum norm problem for a convex set. We state a duality result which presents some analogy with the Nirenberg theorem, and we apply this result to polyhedral convex sets. First, we assume that the polyhedral set is expressed as the intersection of some finite collection of m given half-spaces. We show that a global solution is determined by solving m convex programs. If the polyhedral set is expressed as the convex hull of a given finite set of extreme points, we show that a global minimum for a polyhedral norm is obtained by solving a finite number of linear programs.  相似文献   

10.
Numerical methods are proposed for constructing Nash and Stackelberg solutions in a two-player linear non-zero-sum positional differential game with terminal cost functionals and geometric constraints on the players’ controls. The formalization of the players’ strategies and of the motions generated by them is based on the formalization and results from the theory of positional zero-sum differential games developed by N.N. Krasovskii and his school. It is assumed that the game is reduced to a planar game and the constraints on the players’ controls are given in the form of convex polygons. The problem of finding solutions of the game may be reduced to solving nonstandard optimal control problems. Several computational geometry algorithms are used to construct approximate trajectories in these problems, in particular, algorithms for constructing the convex hull as well as the union, intersection, and algebraic sum of polygons.  相似文献   

11.
A semidefinite programming problem is a mathematical program in which the objective function is linear in the unknowns and the constraint set is defined by a linear matrix inequality. This problem is nonlinear, nondifferentiable but convex. It covers several standard problems, such as linear and quadratic programming, and has many applications in engineering. In this paper, we introduce the notion of minimal-penalty path, which is defined as the collection of minimizers for a family of convex optimization problems, and propose two methods for solving the problem by following the minimal-penalty path from the exterior of the feasible set. Our first method, which is also a constraint-aggregation method, achieves the solution by solving a sequence of linear programs, but exhibits a zigzagging behavior around the minimal-penalty path. Our second method eliminates the above drawback by following efficiently the minimum-penalty path through the centering and ascending steps. The global convergence of the methods is proved and their performance is illustrated by means of an example.  相似文献   

12.
Characterization of the containment of a polyhedral set in a closed halfspace, a key factor in generating knowledge-based support vector machine classifiers [7], is extended to the following: (i) containment of one polyhedral set in another; (ii) containment of a polyhedral set in a reverse-convex set defined by convex quadratic constraints; (iii) Containment of a general closed convex set, defined by convex constraints, in a reverse-convex set defined by convex nonlinear constraints. The first two characterizations can be determined in polynomial time by solving m linear programs for (i) and m convex quadratic programs for (ii), where m is the number of constraints defining the containing set. In (iii), m convex programs need to be solved in order to verify the characterization, where again m is the number of constraints defining the containing set. All polyhedral sets, like the knowledge sets of support vector machine classifiers, are characterized by the intersection of a finite number of closed halfspaces.  相似文献   

13.
A new algorithm, the dual active set algorithm, is presented for solving a minimization problem with equality constraints and bounds on the variables. The algorithm identifies the active bound constraints by maximizing an unconstrained dual function in a finite number of iterations. Convergence of the method is established, and it is applied to convex quadratic programming. In its implementable form, the algorithm is combined with the proximal point method. A computational study of large-scale quadratic network problems compares the algorithm to a coordinate ascent method and to conjugate gradient methods for the dual problem. This study shows that combining the new algorithm with the nonlinear conjugate gradient method is particularly effective on difficult network problems from the literature.  相似文献   

14.
This paper is concerned with the global optimization problem of minimizing a concave function subject to linear constraints and an additional facial reverse convex constraint. Here, the feasible set is the union of some faces of the polyhedron determined by the linear constraints. Several well-known mathematical problems can be written or transformed into the form considered. The paper addresses the Lagrangian duality of the problem. It is shown that, under slight assumptions, the duality gap can be closed with a finite dual multiplier. Finite methods based on solving concave minimization problems are also proposed. We deal with the advantages accrued when outer approximation, cutting plane, or branch-and-bound methods are used for solving these subproblems.This research was supported in part by the Hungarian National Research Foundation, Grant OTKA 2568. The author wishes to thank the Associate Editor and the referees for their valuable comments.  相似文献   

15.
Decomposition of multidisciplinary engineering system design problems into smaller subproblems is desirable because it enhances robustness and understanding of the numerical results. Moreover, subproblems can be solved in parallel using the optimization technique most suitable for the underlying mathematical form of the subproblem. Hierarchical overlapping coordination (HOC) is an interesting strategy for solving decomposed problems. It simultaneously uses two or more design problem decompositions, each of them associated with different partitions of the design variables and constraints. Coordination is achieved by the exchange of information between decompositions. This article presents the HOC algorithm and several new sufficient conditions for convergence of the algorithm to the optimum in the case of convex problems with linear constraints. One of these equivalent conditions involves the rank of the constraint matrix that is computationally efficient to verify. Computational results obtained by applying the HOC algorithm to quadratic programming problems of various sizes are included for illustration.  相似文献   

16.
In this paper, a finite branch-and-bound algorithm is developed for the minimization of a concave power law over a polytope. Linear terms are also included in the objective function. Using the first order necessary conditions of optimality, the optimization problem is transformed into an equivalent problem consisting of a linear objective function, a set of linear constraints, a set of convex constraints, and a set of bilinear complementary constraints. The transformed problem is then solved using a finite branch-and-bound algorithm that solves two convex problems at each of its nodes. The method is illustrated by means of an example from the literature.  相似文献   

17.
The projective method for solving linear matrix inequalities   总被引:2,自引:0,他引:2  
Numerous problems in control and systems theory can be formulated in terms of linear matrix inequalities (LMI). Since solving an LMI amounts to a convex optimization problem, such formulations are known to be numerically tractable. However, the interest in LMI-based design techniques has really surged with the introduction of efficient interior-point methods for solving LMIs with a polynomial-time complexity. This paper describes one particular method called the Projective Method. Simple geometrical arguments are used to clarify the strategy and convergence mechanism of the Projective algorithm. A complexity analysis is provided, and applications to two generic LMI problems (feasibility and linear objective minimization) are discussed.  相似文献   

18.
This paper addresses the problem of minimizing an arbitrary finite sum of products of two convex functions over a convex set. Nonconvex problems in this form constitute a class of generalized convex multiplicative problems. Convex analysis results allow to reformulate the problem as an indefinite quadratic problem with infinitely many linear constraints. Special properties of the quadratic problem combined with an adequate outer approximation procedure for handling its semi-infinite constrained set enable an efficient constraint enumeration global optimization algorithm for generalized convex multiplicative programs. Computational experiences illustrate the proposed approach.  相似文献   

19.
 We consider a quadratic cut method based on analytic centers for two cases of convex quadratic feasibility problems. In the first case, the convex set is defined by a finite yet large number, N, of convex quadratic inequalities. We extend quadratic cut algorithm of Luo and Sun [3] for solving such problems by placing or translating the quadratic cuts directly through the current approximate center. We show that, in terms of total number of addition and translation of cuts, our algorithm has the same polynomial worst case complexity as theirs [3]. However, the total number of steps, where steps consist of (damped) Newton steps, function evaluations and arithmetic operations, required to update from one approximate center to another is , where ε is the radius of the largest ball contained in the feasible set. In the second case, the convex set is defined by an infinite number of certain strongly convex quadratic inequalities. We adapt the same quadratic cut method for the first case to the second one. We show that in this case the quadratic cut algorithm is a fully polynomial approximation scheme. Furthermore, we show that, at each iteration, k, the total number steps (as described above) required to update from one approximate center to another is at most , with ε as defined above. Received: April 2000 / Accepted: June 2002 Published online: September 5, 2002 Key words. convex quadratic feasibility problem – interior-point methods – analytic center – quadratic cuts – potential function  相似文献   

20.
In this article, a branch and-bound outer approximation algorithm is presented for globally solving a sum-of-ratios fractional programming problem. To solve this problem, the algorithm instead solves an equivalent problem that involves minimizing an indefinite quadratic function over a nonempty, compact convex set. This problem is globally solved by a branch-and-bound outer approximation approach that can create several closed-form linear inequality cuts per iteration. In contrast to pure outer approximation techniques, the algorithm does not require computing the new vertices that are created as these cuts are added. Computationally, the main work of the algorithm involves solving a sequence of convex programming problems whose feasible regions are identical to one another except for certain linear constraints. As a result, to solve these problems, an optimal solution to one problem can potentially be used to good effect as a starting solution for the next problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号