首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Surface restructuring in ambient air of medical grade silicone rubber surfaces modified by repeated RF plasma treatments using various discharge gases including oxygen, argon, carbon dioxide and ammonia, was studied quantitatively. From advancing and receding water contact angle data, the fraction of the surface covered by mobile and immobile polar groups, and a characteristic time constant of the restructuring process were calculated. For argon plasma treated surfaces, the fraction of immobile polar groups increased with repeated plasma treatments, but remained relatively constant for samples repeatedly treated by an ammonia plasma. The use of an oxygen plasma only yielded incorporation of mobile polar groups but not of immobile polar groups. The increase in the restructuring time constants of argon and ammonia plasma treated silicone rubber with the number of plasma treatments suggested enhanced crosslinking of the silicone rubber by these plasmas. In contrast, when an oxygen plasma was repeatedly used, the restructuring time constant decreased suggesting chain cleavage by an oxygen plasma. Tentatively, the carbon dioxide plasma treatment of silicone rubber may initially (up to 3–4 repeated treatments) yield chain cleavage, while the occurrence of crosslinking is indicated after more repetitions.  相似文献   

2.
In this study sulphur hexafluoride (SF6) plasmas and argon plasma immersion ion implantation (ArPIII) techniques have been applied to improve the hydrophobicity of poly(tetrafluoroethylene) (PTFE), polyurethane and silicone surfaces. As evaluated by water contact angle measurements, all the treatments resulted in a significant enhancement in the hydrophobicity of the polymers. However, exposure of the treated samples to air induced a strong variation in their hydrophobicity as a consequence of post‐plasma reactions between atmospheric species and remnant surface free radicals. X‐ray photoelectron spectroscopy results strongly suggest that for polyurethane and silicone the surface fluorination by SF6 plasmas and the creation of new carbon bonds and radicals are the main agents for hydrophobicity enhancement. The PTFE exposed to ArPIII revealed increases in the contact angles after exposure to air. A significant incorporation of oxygen and the formation of new carbon bonds were revealed by XPS measurements. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Select applications of hydrophobic nanocomposites include preparation of robust self-cleaning surfaces, water-repellent glass surfaces, and waterproofing textiles. Various nanocomposites have been reported in the literature; however, the relationship between the nanocomposite surface morphology and its hydrophobicity needs to be understood better. In the present work Fe2O3 nanoparticles and poly ethyl metha acrylate (PEMA) were used in varying proportions to obtain a series of model hydrophobic surfaces (spin-coated on glass substrate). The hydrophobicity of these surfaces was measured by static contact angle; a maximum of 103° was obtained at highest loading of iron oxide nanoparticles. These surfaces were also characterized using AFM. The contact angle and characterization data were used to test some of the models which have been proposed in the recent literature on prediction of contact angle for composite surfaces. It is proposed that the hydrophobicity of the iron oxide–PEMA surface is due to the physical roughness causing air entrapment as well as the chemical heterogeneity. Based on the experimental studies and the simulations using the recent models on contact angle, some general features of relationship between a composite surface morphology and its hydrophobicity is proposed.  相似文献   

4.
In this study, first the acrylonitrile‐butadiene rubber (NBR5080) was modified by argon (Ar), air, and oxygen plasma at low temperature, and the effect of plasma process (power, time, and pressure) on the surface properties of NBR5080, the interfacial properties, physical properties, and the mechanical properties of NBR5080/polytetrafluoroethylene (PTFE) composites were investigated. The state contact angle and the surface free energy were applied to characterize the surface wettability of NBR5080. The scanning electron microscope and the atomic force microscope were used to observe the surface morphology of the NBR5080. The chemical changes on the NBR5080 surface were verified by X‐ray photoelectron spectroscopy. The average water contact angle the NBR5080 declined obviously when NBR5080 was treated by Ar (100 W/600 s/30 Pa). The active oxygen groups were introduced onto the surface of NBR5080 by cold plasma treatment and more active group containing oxygen were observed on the samples treated by Ar plasma. The peel strength between the NBR5080 and the PTFE was increased obviously, which increased from 0 to 44.2 N?m?1 for Ar plasma treatment. The mass and the dimension of NBR5080 increase sharply after immersing in kerosene, whereas the NBR5080/PTFE composites changed a little. The mechanical properties of NBR5080 and NBR5080/PTFE composites decreased as the immersion time in kerosene increased, but the decreased degree of NBR5080 is higher than NBR5080/PTFE composites.  相似文献   

5.
荷叶表面纳米结构与浸润性的关系   总被引:4,自引:0,他引:4  
通过烘烤、化学萃取及物理剥除等方法改变荷叶表面的纳米结构和化学组成, 在环境扫描电镜(ESEM)和全反射红外光谱(ATR)对样品的微观形貌和化学组成进行表征的基础上, 为消除其它外界因素影响样品的真实微观形貌, 进一步采用原子力显微镜(AFM)进行了表征. 通过测量不同处理方法所得样品的表观接触角表征了样品的浸润性质. 结果表明, 荷叶表面的蜡质是产生表面疏水性的根本原因, 其微米级结构放大了其疏水性, 而纳米结构是导致其表面高接触角、低滚动角, 即“荷叶效应”的关键原因.  相似文献   

6.
微米/纳米结构对氟硅烷修饰氧化铝表面疏水性能的影响   总被引:3,自引:1,他引:2  
以多孔氧化铝膜为基板,用NaOH溶液进行化学腐蚀,控制适当的条件,得到氧化铝微米/纳米表面结构.用氟硅烷分别修饰光滑氧化铝膜、多孔氧化铝膜及其微米/纳米结构表面,进行接触角测试、XPS成分分析和SEM结构表征.结果表明,氟硅烷修饰的微米/纳米结构表面对水的接触角(149°±2°)比光滑表面(101°±1°)和纳米孔洞结构表面(141°±2°)都高.  相似文献   

7.
用200 W射频容性耦合氧等离子体处理低密度聚乙烯(LDPE)表面1 min, 研究了老化温度及时间对LDPE表面成分、 形貌和润湿性的影响. 扫描电子显微镜结果表明, 等离子体改性LDPE表面出现纳米凸点织构, 在60和90 ℃老化24 h后纳米凸点织构特征基本保持稳定. X射线光电子能谱分析表明, 等离子体改性LDPE表面经60 ℃老化24 h后, C—C含量由76.9%增至83.0%, C—O, CO和O—CO含量分别由16.4%, 2.2%和4.5%降至13.1%, 1.9%和2.0%. 经90 ℃老化24 h后, C—C含量较60 ℃老化表面增至84.1%, C—O含量分别降至10.1%, CO和O—CO含量分别增至3.1%和2.7%. 等离子体改性LDPE表面接触角由97.2°降至42.3°, 经60 ℃老化24 h后接触角增至95.9°, 经90 ℃老化24 h后接触角增至104.2°, 等离子体改性LDPE表面发生“疏水性过回复”. 根据含有粗糙因子的接触角随时间演变模型, 得到了具有纳米凸点织构LDPE表面在不同老化温度下的可移动极性基团所占面积分数(fmp)、 固定极性基团所占面积分数(fimp)和特征时间常数(τ)3个成分重构参数, 解释了“疏水性过回复”现象.  相似文献   

8.
In this work, poly-ε-caprolactone samples are modified by an atmospheric pressure plasma jet in pure argon and argon/water vapour mixtures. In a first part of the paper, the chemical species present in the plasma jet are identified by optical emission spectroscopy and it was found that plasmas generated in argon/0.05 % water vapour mixtures show the highest emission intensity of OH (A–X) at 308 nm. In a subsequent section, plasma jet surface treatments in argon and argon/water vapour mixtures have been investigated using contact angle measurements and X-ray photoelectron spectroscopy. The polymer samples modified with the plasma jet show a significant decrease in water contact angle due to the incorporation of oxygen-containing groups, such as C–O, C=O and O–C=O. The most efficient oxygen inclusion was however found when 0.05 % of water vapour is added to the argon feeding gas, which correlates with the highest intensity of OH (X) radicals. By optimizing the OH (X) radical yield in the plasma jet, the highest polymer modification efficiency can thus be obtained.  相似文献   

9.
Vulcanized fluorosilicone rubber for aviation was treated by argon and oxygen cold atmospheric plasma (CAP) in order to modify its hydrophilic properties. The sample's chemical composition was analyzed by X‐ray photoelectron spectroscopy (XPS). The static contact angle, surface free energy, and adhesion strength were used to indicate the hydrophilic properties. Additionally, the surface morphologies of the specimens were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results showed that the contact angle declined from 101.5° to 22°, and the surface energy rose from 21.3 to 71.2 mJ/m2 after they were treated by argon plasma. Alternatively, the water contact angle decreased to 25.5°, and the surface energy increased to 70.6 mJ/m2 after they were treated by oxygen plasma. In addition, the SEM and AFM images of the samples illustrate that the treated surface of fluorosilicone rubber becomes rougher than the non‐treated surface. The concentrations of carbon (C) and fluorine (F) elements of the material' surface decreased and the contents of O element greatly enriched after plasma treatment. Additionally, chemical group C―O and C―OH appeared after the treatment. However, the hydrophilic effect of the plasma treatment is aged after the specimens were stored for 8–12 h. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
A poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fibrous surface with various bead-on-string structures was fabricated by electrospinning. PHBV was electrospun at various concentrations and then CF4 plasma treatment was employed to further improve the hydrophobicity of the PHBV fiber surfaces. The surface morphology of the electrospun PHBV mats was observed by scanning electron microscopy (SEM). The surface properties were characterized by water contact angle (WCA) measurements and X-ray photoelectron spectroscopy (XPS). The surface morphology of the electrospun PHBV fibrous mats with the bead-son-string structure varied with the solution concentration. The WCA of all of the electrospun PHBV mats was higher than that of the PHBV film. In particular, a very rough fiber surface including porous beads was observed when PHBV was electrospun from the solution with a concentration of 26 wt%. Also, its WCA further increased from 141 degrees to 158 degrees after CF(4) plasma treatment for 150 s. PHBV can be rendered superhydrophobic by controlling the surface morphology and surface energy, which can be achieved by adjusting the electrospinning and plasma treatment conditions.  相似文献   

11.
溶胶凝胶法制备超疏水二氧化硅涂膜及其表面润湿行为   总被引:2,自引:0,他引:2  
采用溶胶-凝胶法以正硅酸乙酯(TEOS)和甲基三乙氧基硅烷(MTES)为前驱体制备超疏水SiO2涂层。红外光谱(FTIR)和热重分析(TGA)表征合成SiO2的化学组成,通过透射电镜(TEM)和扫描电镜(TEM)观察制备SiO2的结构形貌,扫描电镜(SEM)和原子力显微镜(AFM)观察SiO2涂膜的表面形貌,通过测试水接触角(WCA)讨论SiO2涂层的表面微观结构与其表面疏水性能的关系。结果表明以TEOS和MTES为共前驱体可以制备得到表面带-CH3基团的SiO2溶胶,SiO2溶胶在老化过程中纳米SiO2粒子由于自组装作用形成草莓状微米-纳米双微观结构,这种结构赋予SiO2涂膜表面不同等级的粗糙度,使得水滴与涂膜表面接触时能够形成高的空气捕捉率和较小的粗糙度因子,与SiO2表面疏水性的-CH3基团共同作用形成类荷叶超疏水结构。  相似文献   

12.
乙烯等离子体处理的云母表面结构及表面性质   总被引:5,自引:0,他引:5  
用元素分析、色-质谱、裂解气相色谱和顺磁共振等方法研究了经乙烯等离子体处理的云母表面化学结构及处理过程。结果表明,云母颗粒表面形成了厚数十埃的等离子体聚乙烯膜,其化学结构与反应体系中无云母时得到的等离子体聚乙烯膜相同。通过扫描电镜观察到云母片表面的聚合膜具有规则的海星状花样,随处理时间的延长花样按比例长大。水与云母表面的接触角数据说明,乙烯等离子体处理使云母表面的疏水性提高到聚乙烯的水平,比氩气等离子体、硅烷偶联剂及钛酸酯偶联剂处理的效果均更为显著。  相似文献   

13.
The conservation of historic sculptures is receiving growing attention because of the increasing air pollution. A hydrophobic silica coating was synthesized to protect historic sculptures from weathering by starting from a solution of tetraethoxyorthosilicate (TEOS) precursor using hexadecyltrimethoxysilane (HDTMS) as hydrophobic modifier in the presence of ammonia as a catalyst. The molar ratio of ethanol, TEOS, H2O and NH4OH was kept constant at 8:0.045:3:2.8 and the molar ratio of HDTMS/TEOS (M) was varied from 0 to 0.458. The organic modification was confirmed by infrared spectroscopic studies, and the hydrophobicity of the coating was tested by the contact angle measurements. The stone surface morphology of sample treated with silica coating was characterized. The results showed that the nanocomposites were composed of spherical particles with grain size of about 190 nm in diameter. After the limestone's surface was modified, the contact angle of limestone increased from 20° to 100° for M0.458. The protective performance evaluated with its ability to resist acid rain reveals that the protective effects are satisfying.  相似文献   

14.
Poly(ethylene terephthalate) (PET) films were treated by argon plasma following by graft copolymerization with acrylic acid (AAc). The obtained PET-surface grafted PAA (PET-g-PAA) was coupled with chitosan (CS) and o-carboxymethylchitosan (OCMCS) molecules, respectively. Their surface physicochemical properties were characterized by X-ray photoelectron spectroscopy (XPS), water contact angle and streaming potential measurements. The PET-g-PAA surface containing carboxylic acid, CS immobilized PET surface containing amino and OCMCS immobilized PET surface containing both carboxylic acid and amino groups, make the PET surface exhibited a hydrophilic character. The blood compatibility was evaluated by platelet contacting experiments and protein adsorption experiments in vitro. The results demonstrate that the PET surface coupling OCMCS shows much less platelet adhesive and fibrinogen adsorption compared to the other surface modified PET films. The anticoagulation of PET-OCMCS is ascribed to the suitable balance of hydrophobicity/hydrophilicity, surface zeta potential and the low adsorption of protein.  相似文献   

15.
Polyphosphazenes are a class of hybrid organic-inorganic macromolecules with high thermo-oxidative stability and good solubility in many solvents. Fluoroalkoxy phosphazene polymers also have high surface hydrophobicity. A method is described to tune this surface property while maintaining the advantageous bulk materials characteristics. The polyphosphazene single-substituent polymer, poly[bis(2,2,2-trifluoroethoxy)phosphazene], with flat film, fiber mat, or bead mat morphology was surface functionalized using an atmospheric plasma treatment with oxygen, nitrogen, methane, or tetrafluoromethane/hydrogen gases. Surface chemistry changes were detected by static water contact angle (WCA) measurements as well as X-ray photon spectroscopy (XPS). It was found that changes in the WCA of as much as 150 degrees occurred, accompanied by shifts in the ratio of elements on the polymer surface as detected by XPS. Overall this plasma technique provides a convenient method for the generation of specific surface characteristics while maintaining the hydrophobicity of the bulk material.  相似文献   

16.
Ethylene-propylene-diene monomer (EPDM) containing 5-ethylidene-2-norbornene (ENB) as diene was exposed to an artificial weathering environment produced by a xenon lamp light exposure and weathering equipment for different time periods. The surface chemical changes were detected by Specular Reflection Fourier Transform Infrared (SR-FTIR) spectroscopy, Raman spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The change in surface color, contact angle and morphology was monitored by spectrophotometer, optical contact angle measuring device and Scanning Electron Microscope (SEM). Furthermore, surface energy was calculated through contact angles of water and formamide. The results showed that hydroxyl, carbonyl and ester groups were formed during exposure to this artificial weathering environment. EPDM surface became redder, yellower and lighter in the first stage of aging and then remained almost unchanged. The contact angles of water and formamide decreased to a minimum and then increased slowly. The surface degradation is a zero order reaction. In addition, the plausible degradation mechanism was proposed.  相似文献   

17.
Surface modification with dielectric barrier discharge (DBD) plasma was carried out at atmospheric pressure (argon as the discharge gas) to improve the biocompatibility of hydrophobic acrylate intraocular lens (IOL). Changes of the plasma-treated IOL surface in chemical composition, morphology and hydrophilicity were comprehensively evaluated by X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and water contact angle (WCA) measurements. The surface biocompatibility of the untreated and plasma-treated IOLs was compared with the adhesion behavior of platelets, macrophages and lens epithelial cells (LECs) in vitro. After DBD plasma treatment, the hydrophilicity of the IOL surface was obviously improved. The changes in WCA with treatment extension may be attributed to both the introduction of oxygen or/and nitrogen-containing polar groups and the increase of surface roughness induced by plasma etching effect. The existence of low molecular weight oxidized material (LMWOM) was proved on the plasmatreated IOL which was caused by the chain scission effect of the plasma treatment. The plasma-treated IOLs resisted the adhesion of platelets and macrophages significantly. The LECs spreading and proliferation were postponed on the IOLs plasma-treated for more than 180 s, with a well maintained epithelial phenotype of LECs. The IOL biocompatibility was improved after the DBD plasma treatment. We speculate that slighter foreign-body reaction and later incidence of anterior capsule opacification (ACO) may be expected after implantation of the argon DBD plasma-treated IOL. Supported by the Zhejiang Natural Science Foundation of China (Grant No. 2004C23003)  相似文献   

18.
Two kinds of polypeptides were tethered onto the surface of polypropylene microporous membrane (PPMM) through a ring opening polymerization of L-glutamate N-carboxyanhydride initiated by amino groups which were introduced by ammonia plasma and y-aminopropyl triethanoxysilane treatments. X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (FT-IR/ATR), scanning electron microscopy (SEM), together with water contact angle measurements were used to characterize the modified membranes. XPS analyses and FT-IR/ATR spectra demonstrated that polypeptides are actually grafted onto the membrane surface. The wettability of the membrane surface increases at first and then decreases with the increase in grafting degrees of polypeptide. Platelet adhesion and murine macrophage attachment experiments reveal an enhanced hemocompatibility for the polypeptide modified PPMMs. All these results give evidence that polypeptide grafting can simultaneously improve the hemocompatibility as well as reserve the hydrophobicity for the membrane, which will provide a potential approach to improve the performance of polypropylene hollow fiber microporous membrane used in artificial oxygenator.  相似文献   

19.
The surface of magnesium oxysulfate (MOS) whiskers was treated through plasma polymerization to increase the compatibility between the MOS whiskers and a polymer matrix. Different plasma parameters were chosen to determine the most hydrophobic coating. The surface structure of the plasma-treated MOS whiskers was examined. The MOS whiskers retained their crystal structure after plasma treatment, as shown by X-ray powder diffraction (XRD) analyses. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy analyses revealed that a polymer sheath was formed on the surface of the MOS whiskers, and interfacial chemical bonds were generated between the polymer sheath and the MOS whiskers. The thin-layer polymer sheath was uniform around the entire surface of the MOS whiskers and exhibited a typical amorphous structure, as determined by transmission electron microscopy (TEM) combined with selected area electron diffraction (SAED) analyses. The possible reaction mechanism on the surface of the MOS whiskers under plasma treatment was then proposed. Finally, the effect of surface treatment was evaluated by scanning electron microscopy (SEM), measurement of the contact angle and contact angle hysteresis, and torque rheometer. Results showed that plasma treatment could markedly increase the hydrophobicity of the MOS whiskers' surface, effectively reducing the agglomeration and improving the dispersibility of the MOS whiskers in the matrix, which results in the improved compatibility between the MOS whiskers and the polyvinyl matrix, as well as the processability of the composites.  相似文献   

20.
利用丙交酯开环聚合法制备了聚(D-乳酸)-聚二甲基硅氧烷-聚(D-乳酸)(PDLA-b-PDMS-b-PDLA)三嵌段聚合物,将其溶液涂覆至充斥着非溶剂蒸汽的聚(L-乳酸)(PLLA)表面,PDLA-b-PDMS-b-PDLA在缓慢沉积的过程中与PLLA发生立构复合及自组装,得到由立构复合的亚微米颗粒组装体形成的聚乳酸表面疏水层。 研究了聚合物溶液的质量浓度、组装温度以及溶剂对聚乳酸表面的微观形貌和疏水性能产生的影响。 结果表明,随着PDLA-b-PDMS-b-PDLA聚合物溶液质量浓度的增加,可以实现聚乳酸表面Wenzel-Cassie-Wenzel的疏水行为转变;在0 ℃下,可得到最大疏水角151°的疏水层;选择对聚合物溶解性、挥发速度不同的溶剂,得到的表面微观形貌和疏水性也不同。 由于聚乳酸制品表面的PLLA链段与亚微米颗粒中的PDLA链段也能够立构复合,因此该表面疏水层对刀刮、胶带剥离和手指擦拭测试均表现出良好的耐受性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号