首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
为了探究西洋梨品种茄梨及其红色芽变红茄梨成熟期果皮代谢产物差异,采用超高效液相色谱-质谱联用技术,对茄梨和红茄梨成熟期果皮进行非靶向代谢组学研究。通过主成分分析和正交偏最小二乘判别分析,构建了多变量统计分析模型,结合模型和变量重要性投影与最大差异倍数值,基于精确质量数、二级碎片以及同位素分布,使用PMDB(Plant Metabolome Database)数据库进行定性,筛选并鉴定出茄梨和红茄梨果皮中显著性变化(P<0.05, VIP(variable importance in project)≥1)的差异代谢物有83种,主要包括酚酸类、黄酮类和氨基酸类物质,涉及类黄酮代谢、氨基酸代谢、苯丙烷类代谢等代谢途径,其中53种物质含量上调,30种物质表达下调。通过KEGG(Kyoto Encyclopedia of Genes and Genomes)数据库进一步对差异代谢物质进行通路富集分析,差异代谢物主要分布在20条代谢途径中,P<0.05的代谢途径有6条,分别是类黄酮生物合成、黄酮和黄酮醇生物合成、苯丙烷生物合成、丁酸酯代谢、苯丙氨酸代谢、酪氨酸代谢。这些差异代谢物的变化可能是导致茄梨和红茄梨果皮色泽不同的原因。该研究从植物代谢组学角度初步揭示了茄梨和红茄梨成熟期果皮的代谢产物差异性。  相似文献   

2.
沈葹  杨奕  王晶波  陈曦  刘婷婷  卓勤 《色谱》2021,39(3):291-300
不同的蜜源植物具有结构多样的次生代谢产物。该研究以8种不同蜜源单花蜜(洋槐蜜、枣花蜜、荆条蜜、椴树蜜、荞麦蜜、麦卢卡蜜、枸杞蜜、益母草蜜)为研究对象,建立了基于超高效液相色谱-四极杆飞行时间质谱技术(UPLC-Q-TOF-MSE)的非靶向代谢组学方法,考察了不同蜜源中次生代谢产物的差异。该研究采用固相萃取前处理方法和UPLC-Q-TOF-MSE方法,获得不同蜜源单花蜜的植物代谢组信息,并构建了多变量统计分析模型,对不同来源的单花蜜进行模式识别和差异分析,发现洋槐蜜、枣花蜜、荆条蜜、椴树蜜、荞麦蜜、麦卢卡蜜相互间存在不同程度的显著差异。结合模型的变量重要性投影、方差分析与最大差异倍数值,根据精确前体离子和碎片离子质量信息检索Chemspider、HMDB数据库,该研究筛选并鉴定出32个代谢差异化合物,其中黄酮类化合物18个、酚酸类化合物7个、苯苷与萜苷类化合物6个、甾体类化合物1个;研究发现麦卢卡蜜和荞麦蜜以黄酮类化合物为主要差异代谢物,荆条蜜中酚酸类化合物为特征性表达,苯苷与萜苷类化合物主要为椴树蜜的特征代谢物。该研究从植物代谢组学角度初步揭示了不同单花蜜的代谢产物差异性以及特征化合物,为基于化学分析技术的蜂蜜溯源识别与质量评价提供了有效的研究策略。  相似文献   

3.
采用超高效液相色谱-质谱联用(UPLC-MS/MS)方法研究了阿卡波糖对Ⅱ型糖尿病大鼠代谢轮廓的影响, 分析了健康组、 糖尿病模型组和糖尿病给予阿卡波糖组的大鼠尿样, 采用主成分分析法(PCA)和偏最小二乘法-判别分析(PLS-DA)对数据进行分析. PCA得分图表明, 健康组、 糖尿病组和阿卡波糖组的代谢轮廓有显著差别, 根据PLS-DA载荷图筛选, 将对各组分离贡献大的化合物的串联质谱分析数据经Human Metabolome Database(HMDB)和Mass Bank.jp等数据库检索, 进行质谱信息匹配, 鉴定出苯乙酰甘氨酸、 肌酐及葡萄糖酸等8种内源性代谢物为潜在生物标记物.  相似文献   

4.
药用植物化学成分种类繁多、结构复杂,而传统方法难以获得全面反映其所含成分随时间、品种和生态环境等因素发生的变化信息,因此需要建立系统、全面的分析方法以进行整体物质基础研究。本研究开展了基于液相色谱-串联质谱(LC-MS/MS)技术的新疆一枝蒿植物代谢组学分析方法研究,并将其应用于该植物不同组织器官代谢组的差异分析。重点考察了样品前处理过程中的提取溶剂及比例、复溶溶剂比例、超声时间对非靶向代谢组学研究的影响,以代谢物覆盖度为主要指标选择了最优条件并进行了方法学验证。采用上述前处理方法和LC-MS/MS分析方法,获得了新疆一枝蒿根、茎、枝、叶、花不同组织器官的代谢组信息,并构建多变量统计模型进行分析,发现花与其它组织器官的代谢组存在显著差异。结合数据库检索与化合物质谱裂解规律分析,获得差异代谢物的结构类型,包括61个黄酮类、97个一枝蒿酮酸衍生物、7个绿原酸类化合物及15个其它类型化合物。进一步采用聚类热图分析针对上述180个差异代谢物在各组织器官的分布情况进行表征,初步揭示了各类化合物在不同组织器官的分布特征。本研究不仅为新疆一枝蒿植物化学成分的组织器官分布及其有效成分的合理利用提供了重要信息,同时为药用植物的质量控制、品种改良以及合理开发提供了新的研究策略。  相似文献   

5.
采用基于液相色谱-质谱联用的方法对慢性心力衰竭(Chronic heart failure, CHF)患者和正常对照(Control)人群的尿液进行分析, 筛选慢性心力衰竭患者尿液中的差异代谢物, 研究其发病机制, 并为临床治疗提供科学依据.选择15个慢性心力衰竭患者(年龄(62.27±3.14)岁)及15个正常人(年龄(65.41±4.63)岁), 采用高分辨度快速液相色谱-四极杆-飞行时间串联质谱(RRLC-QTOF/MS)技术对尿液代谢物进行分析, 采用主成分分析(PCA)对两组代谢物进行分类, 并筛选潜在生物标记物;运用偏最小二乘判别分析法(PLS-DA)建模, 考察生物标记物对疾病筛选的预测能力.研究结果表明, CHF组和Control组尿液代谢物谱能得到很好的区分, 发现并鉴定了2种潜在生物标记物尿苷及丙氨酰色氨酸, 提示嘧啶代谢和色氨酸代谢可能在心力衰竭发生发展中有重要作用.  相似文献   

6.
李丽丽  李月  卢恒  王晓 《分析测试学报》2020,39(12):1501-1507
基于液相色谱-质谱(LC-MS)建立了金银花代谢组学分析方法,优化得到最佳提取试剂为甲醇-水(体积比3∶1),并对方法的重复性和精密度进行了考察。结果表明方法的稳定性良好,满足代谢组学分析的要求。通过质量数、保留时间和二级质谱数据对金银花中的初生和次生代谢物进行了定性分析,共鉴别出157个代谢物,包括氨基酸、核苷、脂肪酸、脂质等初生代谢物以及酚酸、黄酮、环烯醚萜苷等次生代谢物。不同花期的金银花代谢组学分析发现,次生代谢物酚酸类、黄酮类和环烯醚萜苷类的含量随着花期的增加而显著下降。初生代谢物中,大部分氨基酸、核苷、氧化脂肪酸的含量显著下降,而大部分的溶血磷脂酰胆碱(Lyso PC)、溶血磷脂酰乙醇胺(Lyso PE)和脂肪酸的含量显著上升。该研究结果可为金银花药效成分代谢调控机制的深入研究及后期种植采收提供理论指导。  相似文献   

7.
于欢  黎莉  梁琼麟  王义明  李平  罗国安 《色谱》2011,29(4):320-324
建立了基于超高效液相色谱-飞行时间质谱(UPLC/TOF MS)分析技术的血浆代谢指纹谱,应用多元统计分析方法评价糖尿病肾病患者血浆代谢物变化差异及糖肾方的干预效果。通过研究糖肾方干预糖尿病肾病血浆内源性代谢物的变化,探索与该疾病密切相关的代谢途径,评价糖肾方的治疗效果。结果发现: 经糖肾方治疗后,血浆内源性代谢物发生了明显变化,磷脂代谢、脂肪酸代谢、氨基酸代谢、嘌呤嘧啶代谢、固醇类代谢等多个代谢途径得到纠正。本研究基于UPLC/TOF MS的代谢组学方法,能够从整体水平反映疾病治疗过程中代谢网络的变化趋势,证实糖肾方具有治疗糖尿病肾病的临床疗效并有助于阐释药物作用机理。  相似文献   

8.
以冷冻甲醇提取,C_(18)色谱柱和HILIC色谱柱分别分离黑鲷脾脏中的内源性代谢物,采用基于超高效液相色谱-飞行时间质谱联用技术(UPLC-TOF-MS)的非靶向代谢组学研究方法,分析了黑鲷饲喂低聚硒化氨基多糖后脾脏中内源性代谢物的变化差异,揭示了低聚硒化氨基多糖调节黑鲷免疫功能的潜在机制。采用XCMS~(plus)软件结合高分辨二级质谱数据库处理质谱原始数据,筛选出潜在生物标志物,并通过Metabo Analyst 4.0网站分析相关代谢通路。结果表明,黑鲷饲喂低聚硒化氨基多糖后脾脏中的36个代谢物发生显著变化;低聚硒化氨基多糖可通过9条代谢通路增强黑鲷的免疫机能。该研究结果为阐明低聚硒化氨基多糖的免疫增强机制提供了科学依据。  相似文献   

9.
以三氯氧磷为磷酰化试剂,与尿嘧啶核苷反应,将所得中间产物尿苷磷酰二氯进行胺解,生成具有抗病毒活性的尿苷磷酰胺化合物,目标化合物结构通过核磁确认,并用电喷雾电离串联质谱(ESI MS/MS)仪检测产物,研究了此类化合物的质谱裂解规律,发现了1个类似环磷腺苷的环状裂解碎片,该结果得到密度泛函理论的支持,对尿苷含磷衍生物质谱裂解数据库是一个重要的补充.  相似文献   

10.
对影响烟草代谢物提取的4个关键因素(溶剂、提取方式、提取时间、提取温度)在3个水平上进行了正交设计,确立了最佳提取方法;对色谱和质谱部分的实验条件进行优化,建立了基于超高压液相色谱-四级杆串联飞行时间质谱(UHPLC-Q-TOF/MS)平台的烟草代谢组学分析方法。方法可检测到2445个色谱峰,提取及分析的重现性较好。  相似文献   

11.
Secondary metabolites are essential for plant survival and reproduction. Wild undomesticated and tropical plants are expected to harbor highly diverse metabolomes. We investigated the metabolomic diversity of two morphologically similar trees of tropical Africa, Erythrophleum suaveolens and E. ivorense, known for particular secondary metabolites named the cassaine-type diterpenoids. To assess how the metabolome varies between and within species, we sampled leaves from individuals of different geographic origins but grown from seeds in a common garden in Cameroon. Metabolites were analyzed using reversed phase LC-HRMS(/MS). Data were interpreted by untargeted metabolomics and molecular networks based on MS/MS data. Multivariate analyses enabled us to cluster samples based on species but also on geographic origins. We identified the structures of 28 cassaine-type diterpenoids among which 19 were new, 10 were largely specific to E. ivorense and five to E. suaveolens. Our results showed that the metabolome allows an unequivocal distinction of morphologically-close species, suggesting the potential of metabolite fingerprinting for these species. Plant geographic origin had a significant influence on relative concentrations of metabolites with variations up to eight (suaveolens) and 30 times (ivorense) between origins of the same species. This shows that the metabolome is strongly influenced by the geographical origin of plants (i.e., genetic factors).  相似文献   

12.
Comprehensive metabolome analysis using mass spectrometry (MS) often results in a complex mass spectrum and difficult data analysis resulting from the signals of numerous small molecules in the metabolome. In addition, MS alone has difficulty measuring isobars and chiral, conformational and structural isomers. When a matrix-assisted laser desorption ionization (MALDI) source is added, the difficulty and complexity are further increased. Signal interference between analyte signals and matrix ion signals produced by MALDI in the low mass region (<1500 Da) cause detection and/or identification of metabolites difficult by MS alone. However, ion mobility spectrometry (IMS) coupled with MS (IM-MS) provides a rapid analytical tool for measuring subtle structural differences in chemicals. IMS separates gas-phase ions based on their size-to-charge ratio. This study, for the first time, reports the application of MALDI to the measurement of small molecules in a biological matrix by ion mobility-time of flight mass spectrometry (IM-TOFMS) and demonstrates the advantage of ion-signal dispersion in the second dimension. Qualitative comparisons between metabolic profiling of the Escherichia coli metabolome by MALDI-TOFMS, MALDI-IM-TOFMS and electrospray ionization (ESI)-IM-TOFMS are reported. Results demonstrate that mobility separation prior to mass analysis increases peak-capacity through added dimensionality in measurement. Mobility separation also allows detection of metabolites in the matrix-ion dominated low-mass range (m/z < 1500 Da) by separating matrix signals from non-matrix signals in mobility space.  相似文献   

13.
We report an enabling mass spectrometric method for the analysis of lipid metabolites in order to define better the lipid metabolome in terms of chemical diversity and generate fragment ion spectra of these metabolites as a potential resource for unknown metabolite identification. This work focuses on the analysis of one important class of lipid metabolites, the acylcarnitines. Current analytical methods have only detected and identified a limited number of these metabolites. The method described herein provides the most comprehensive acylcarnitine profile in urine of healthy individuals up to date. It involves an optimized solid phase extraction technique for selective analyte extraction using cartridges containing both lipophilic and cation-exchange properties. The captured analytes are then subjected to ultra-high performance liquid chromatography (UPLC) separation, followed by tandem mass spectrometry (MS/MS) analysis using information-dependent acquisitions and selected reaction monitoring (SRM). The urine of six healthy individuals was analyzed using this method. A total of 355 acylcarnitines were detected; only 43 of them have been previously reported in the urine of healthy individuals. Detection of this large number of acylcarnitines illustrates the great diversity of the lipid metabolome as well as the usefulness of the method for profiling acylcarnitines. Furthermore, the MS/MS spectra of the 355 acylcarnitines will be uploaded to a public human metabolome database as a mass spectrometric resource for unknown metabolite identification.  相似文献   

14.
An untargeted screening strategy for the detection of biotransformation products of xenobiotics using stable isotopic labelling (SIL) and liquid chromatography–high resolution mass spectrometry (LC-HRMS) is reported. The organism of interest is treated with a mixture of labelled and non-labelled precursor and samples are analysed by LC-HRMS. Raw data are processed with the recently developed MetExtract software for the automated extraction of corresponding peak pairs. The SIL-assisted approach is exemplified by the metabolisation of the Fusarium mycotoxin deoxynivalenol (DON) in planta. Flowering ears were inoculated with 100 μg of a 1?+?1 (v/v) mixture of non-labelled and fully labelled DON. Subsequent sample preparation, LC-HRMS measurements and data processing revealed a total of 57 corresponding peak pairs, which originated from ten metabolites. Besides the known DON and DON-3-glucoside, which were confirmed by measurement of authentic standards, eight further DON-biotransformation products were found by the untargeted screening approach. Based on a mass deviation of less than ±5 ppm and MS/MS measurements, one of these products was annotated as DON-glutathione (GSH) conjugate, which is described here for the first time for wheat. Our data further suggest that two DON-GSH-related metabolites, the processing products DON-S-cysteine and DON-S-cysteinyl-glycine and five unknown DON conjugates were formed in planta. Future MS/MS measurements shall reveal the molecular structures of the detected conjugates in more detail.  相似文献   

15.
Metabolome analysis of human cerebrospinal fluid (CSF) is challenging because of low abundance of metabolites present in a small volume of sample. We describe and apply a sensitive isotope labeling LC-MS technique for qualitative analysis of the CSF metabolome. After a CSF sample is divided into two aliquots, they are labeled by 13C-dansyl and 12C-dansyl chloride, respectively. The differentially labeled aliquots are then mixed and subjected to LC-MS using Fourier-transform ion cyclotron resonance mass spectrometry (FTICR MS). Dansylation offers significant improvement in the performance of chromatography separation and detection sensitivity. Moreover, peaks detected in the mass spectra can be readily analyzed for ion pair recognition and database search based on accurate mass and/or retention time information. It is shown that about 14,000 features can be detected in a 25-min LC-FTICR MS run of a dansyl-labeled CSF sample, from which about 500 metabolites can be profiled. Results from four CSF samples are compared to gauge the detectability of metabolites by this method. About 261 metabolites are commonly detected in replicate runs of four samples. In total, 1132 unique metabolite ion pairs are detected and 347 pairs (31%) matched with at least one metabolite in the Human Metabolome Database. We also report a dansylation library of 220 standard compounds and, using this library, about 85 metabolites can be positively identified. Among them, 21 metabolites have never been reported to be associated with CSF. These results illustrate that the dansylation LC-FTICR MS method can be used to analyze the CSF metabolome in a more comprehensive manner.  相似文献   

16.
The selectivity of mass traces obtained by monitoring liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was compared. A number of blank extracts (fish, pork kidney, pork liver and honey) were separated by ultra performance liquid chromatography (UPLC). Detected were some 100 dummy transitions respectively dummy exact masses (traces). These dummy masses were the product of a random generator. The range of the permitted masses corresponded to those which are typical for analytes (e.g. veterinary drugs). The large number of monitored dummy traces ensured that endogenous compounds present in the matrix extract, produced a significant number of detectable chromatographic peaks. All obtained chromatographic peaks were integrated and standardized. Standardisation was done by dividing these absolute peak areas by the average response of a set of 7 different veterinary drugs. This permitted a direct comparison between the LC-HRMS and LC-MS/MS data. The data indicated that the selectivity of LC-HRMS exceeds LC-MS/MS, if high resolution mass spectrometry (HRMS) data is recorded with a resolution of 50,000 full width at half maximum (FWHM) and a corresponding mass window. This conclusion was further supported by experimental data (MS/MS based trace analysis), where a false positive finding was observed. An endogenous matrix compound present in honey matrix behaved like a banned nitroimidazole drug. This included identical retention time and two MRM traces, producing an MRM ratio between them, which perfectly matched the ratio observed in the external standard. HRMS measurement clearly resolved the interfering matrix compound and unmasked the false positive MS/MS finding.  相似文献   

17.
Biotransformation products of two potential antineoplastic agents, benfluron and dimefluron, are characterized using our integrated approach based on the combination of high-performance liquid chromatography (HPLC) separation of phase I and phase II metabolites followed by photodiode-array UV detection and electrospray ionization tandem mass spectrometry (MS/MS). High mass accuracy measurement allows confirmation of an elemental composition and metabolic reactions according to exact mass defects. The combination of different HPLC/MS/MS scans, such as reconstructed ion current chromatograms, constant neutral loss chromatograms or exact mass filtration, helps the unambiguous detection of low abundance metabolites. The arene oxidation, N-oxidation, N-demethylation, O-demethylation, carbonyl reduction, glucuronidation and sulfation are typical mechanisms of the metabolite formation. The interpretation of their tandem mass spectra enables the distinction of demethylation position (N- vs. O-) as well as to differentiate N-oxidation from arene oxidation for both phase I and phase II metabolites. Two metabolic pathways are rather unusual for rat samples, i.e., glucosylation and double glucuronidation. The formation of metabolites that lead to a significant change in the chromophoric system of studied compounds, such as the reduction of carbonyl group in 7H-benzo[c]fluorene-7-one chromophore, is reflected in their UV spectra, which provides valuable complementary information to MS/MS data.  相似文献   

18.
Natural product screening in plants has always been a difficult task due to the complex nature of the plant material and diverse structures of the compounds present in them. Flavonoids are important and diverse class of plant secondary metabolites with numerous medicinal activities. The present study focuses on the development of a high-resolution tandem mass spectral library for the rapid and authentic identification of common flavonoids. A total of forty flavonoid standards belong to class flavones, isoflavones, flavanones, flavanols and anthocyanins were pooled into two solutions applying logP-based strategy. The flavonoids were analyzed using LC-QTOF-MS high-resolution mass spectrometer with optimization of different instrumental parameters to achieve good sensitivity. The library was built by incorporating names, molecular formulae, exact masses, and MS, and MS/MS spectra of analyzed flavonoids using Bruker Library Editor tool. The fragmentation pattern observed for the standard compounds were compared to the fragments reported in the literature. To assess the practical implications, an extract of tea sample was analyzed and screened using the developed library, which resulted in the identification of three common flavonoids based on their HR-ESI-MS/MS spectral features. The established LC-HR-MS/MS method can be used for the targeted identification of flavonoids in complex samples like food material from different botanical families.  相似文献   

19.
Historically, structural elucidation of unknown analytes by mass spectrometry alone has involved tandem mass spectrometry experiments using electron ionization. Most target molecules for bioanalysis in the metabolome are unsuitable for detection by this previous methodology. Recent publications have used high‐resolution accurate mass analysis using an LTQ‐Orbitrap with the more modern approach of electrospray ionization to identify new metabolites of known metabolic pathways. We have investigated the use of this methodology to build accurate mass fragmentation maps for the structural elucidation of unknown compounds. This has included the development and validation of a novel multi‐dimensional LC/MS/MS methodology to identify known uremic analytes in a clinical hemodialysate sample. Good inter‐ and intra‐day reproducibility of both chromatographic stages with a high degree of mass accuracy and precision was achieved with the multi‐dimensional liquid chromatography/tandem mass spectrometry (LC/MS/MS) system. Fragmentation maps were generated most successfully using collision‐induced dissociation (CID) as, unlike high‐energy CID (HCD), ions formed by this technique could be fragmented further. Structural elucidation is more challenging for large analytes >270 Da and distinguishing between isomers where their initial fragmentation pattern is insufficiently different. For small molecules (<200 Da), where fragmentation data may be obtained without loss of signal intensity, complete structures can be proposed from just the accurate mass fragmentation data. This methodology has led to the discovery of a selection of known uremic analytes and two completely novel moieties with chemical structural assignments made. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Mangifera indica L. (mango) is said to be the king of fruits due to its rich nutritional properties and mainly originates from the Indian sub‐continent. The consumption pattern of the mangoes has increased drastically, due to which, many ripening practices/agents were used to make it ready‐to‐eat fruit or juice for the consumers. The fruit quality and metabolic composition are said to be altered due to different ripening agents/practices. The present communication mainly deals to understand the metabolic perturbations in mango fruits due to different ripening practices/agents (room temperature ripening, ethylene, and calcium carbide) using gas chromatography ‐ mass spectrometry based metabolomics. The partial least square‐discriminant analysis has found 16 differential metabolites for different ripening agents/practices which are belong to the classes of amino acids, fatty acids, sugars, and polyols. Four metabolic pathways were found to alter in the fruit metabolome due to different ripening agents/practices. Fructose, glucose, and galactose were found to be significantly up‐regulated due to calcium carbide ripening in comparison to other ripening agents/practices. Overall findings from the present study advocates that mass spectrometry based metabolomics can be valuable tool to understand the fruit quality and safety with respect to consumer health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号