首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We present a general methodology for electromagnetic homogenization and characterization of bianisotropic metasurfaces formed by regular or random arrangements of small arbitrary inclusions at interfaces of two different isotropic media. The approach unites and generalizes the earlier theories developed independently by two joint research groups: that of profs. Holloway and Kuester and that of profs. Simovski and Tretyakov. We analyze the features of both formalisms and discuss their peculiarities in several example cases. Our theory can be used in the analysis and synthesis of a wide spectrum of metasurfaces.

  相似文献   


3.
In the paper, for the Kerr field, we prove that Chandrasekhar's Dirac Hamiltonian and the self‐adjoint Hamiltonian with a flat scalar product of the wave functions are physically equivalent. Operators of transformation of Chandrasekhar's Hamiltonian and wave functions to the η representation with a flat scalar product are defined explicitly. If the domain of the wave functions of Dirac's equation in the Kerr field is bounded by two‐dimensional surfaces of revolution around the z axis, Chandrasekhar's Hamiltonian and the self‐adjoint Hamiltonian in the η representation are Hermitian with equality of the scalar products, .

  相似文献   


4.
In modern Kaluza‐Klein theories which successfully unify gravity, electromagnetism and a scalar field, null geodesics in five dimensions lead to simplified expressions for phase shifts in four‐dimensional spacetime. It might be possible to test for an extra dimension by experiments such as those where neutron interferometry is used to measure the Aharonov‐Bohm effect.

  相似文献   


5.
A single spin‐1/2 particle obeys the Dirac equation in spatial dimension and is bound by an attractive central monotone potential which vanishes at infinity (in one dimension the potential is even). This work refines the relativistic comparison theorems which were derived by Hall 1 . The new theorems allow the graphs of the two comparison potentials and to crossover in a controlled way and still imply the spectral ordering for the eigenvalues at the bottom of each angular momentum subspace. More specifically in a simplest case we have: in dimension , if , then ; and in dimensions, if , where and , then .

  相似文献   


6.
We determine the regularized van der Waals contribution to pressure within a spherical cavity of vapor in a homogeneous, isotropic, infinite medium. The spherical Hamaker function, , has been defined, for the first time, in contrast to the conventional Hamaker function for planar surfaces, . For the materials under consideration, the pressure inside the cavity varies as , where a is the radius of the cavity. For radii below a transition radius, the surface energy (or surface tension) becomes size dependent and could have important implications for homogeneous nucleation of nanosized bubbles in liquids, as well as cavitation of bubbles.

  相似文献   


7.
A possible scenario of the Lorentz symmetry violation is discussed based on the arising of geometric quantum phases yielded by the effects of the Lorentz symmetry violation in the CPT‐even gauge sector of Standard Model Extension. Analogues of the Anandan quantum phase and the scalar Aharonov‐Bohm effect for a neutral particle [J. Anandan, Phys. Lett. A 138 , 347 (1989)] are obtained from the parity‐odd sector of the tensor . Moreover, we build quantum holonomies associated with the analogue of the Anandan quantum phase and discuss a possible analogy with the geometric quantum computation [A. Ekert et al., J. Mod. Opt. 47 , 2501 (2000)].

  相似文献   


8.
We present a feasible protocol of continuous variable quadripartite entanglement from the coupled type I second harmonic generation (SHG) below threshold. According to the sufficient inseparability criteria for multipartite continuous variable (CV) entanglement, the four output fields are proved to be multicolored entangled beams in separable locations with four‐mode amplitude quadratures correlation and relative phase quadratures correlation. It shows that the coupled system can produce a compact tunable multimode entangled source that can be applied into the quantum communication.

  相似文献   


9.
Isamu Akasaki is known for inventing the bright gallium nitride (GaN) p‐n junction blue LED in 1989 and subsequently the high‐brightness GaN blue LED. Together with Shuji Nakamura and Hiroshi Amano, he is one of the three recipients of the 2014 Nobel Prize in Physics. In his Nobel Lecture, he describes the historical progress that led to the invention of the first p‐n junction blue/UV LED and related optical devices. ***

  相似文献   


10.
Ground‐state properties of the non‐interacting symmetric single‐impurity Anderson model (SIAM) are derived from the corresponding eigenenergy equation. Explicit formulae are given for the ground‐state energy, the hybridization, and the momentum distribution that are essential quantities for variational approaches to the interacting model. Various spectral functions, e.g., the total density of states, the phase shift function, and the impurity spectral function, are shown to agree with those obtained from the equation‐of‐motion method (see supplementary material). For a constant hybridization strength and a semi‐elliptic host density of states it is seen that the impurity spectral function builds up weight at the band edges.

  相似文献   


11.
Analytical solutions of the Schrödinger equation for the one‐dimensional quantum well with all possible permutations of the Dirichlet and Neumann boundary conditions (BCs) in perpendicular to the interfaces uniform electric field are used for the comparative investigation of their interaction and its influence on the properties of the system. Limiting cases of the weak and strong voltages allow an easy mathematical treatment and its clear physical explanation; in particular, for the small , the perturbation theory derives for all geometries a linear dependence of the polarization on the field with the BC‐dependent proportionality coefficient being positive (negative) for the ground (excited) states. Simple two‐level approximation elementary explains the negative polarizations as a result of the field‐induced destructive interference of the unperturbed modes and shows that in this case the admixture of only the neighboring states plays a dominant role. Different magnitudes of the polarization for different BCs in this regime are explained physically and confirmed numerically. Hellmann‐Feynman theorem reveals a fundamental relation between the polarization and the speed of the energy change with the field. It is proved that zero‐voltage position entropies are BC independent and for all states but the ground Neumann level (which has ) are equal to while the momentum entropies depend on the edge requirements and the level. Varying electric field changes position and momentum entropies in the opposite directions such that the entropic uncertainty relation is satisfied. Other physical quantities such as the BC‐dependent zero‐energy and zero‐polarization fields are also studied both numerically and analytically. Applications to different branches of physics, such as ocean fluid dynamics and atmospheric and metallic waveguide electrodynamics, are discussed.

  相似文献   


12.
The intrinsic lattice thermal conductivity of MoS2 is an important aspect in the design of MoS2‐based nanoelectronic devices. We investigate the lattice dynamics properties of MoS2 by first‐principle calculations. The intrinsic thermal conductivity of single‐layer MoS2 is calculated using the Boltzmann transport equation for phonons. The obtained thermal conductivity agrees well with the measurements. The contributions of acoustic and optical phonons to the lattice thermal conductivity are evaluated. The size dependence of thermal conductivity is investigated as well.

  相似文献   


13.
Nonlinear optical microscopy (NLOM) relies on nonlinear light–matter interactions to provide images from larger depths within biological structures compared to conventional confocal fluorescence microscopy. These nonlinear light–matter interactions include multiphoton excitation fluorescence (MPEF), second‐harmonic generation (SHG), coherent anti‐Stokes Raman scattering (CARS), and stimulated Raman scattering (SRS). This review discusses the theories of and instrumentation for various NLOM techniques, with a particular focus on endogenous signals and exogenous probes. These signals and probes expand the breadth of information that optical imaging can provide. We also discuss the application of NLOM in biomedical research, including tissue engineering, drug delivery and clinical diagnostics. Current technological limitations are also discussed.

  相似文献   


14.
Shuji Nakamura discovered p‐type doping in Gallium Nitride (GaN) and developed blue, green, and white InGaN based light emitting diodes (LEDs) and blue laser diodes (LDs). His inventions made possible energy efficient, solid‐state lighting systems and enabled the next generation of optical storage. Together with Isamu Akasaki and Hiroshi Amano, he is one of the three recipients of the 2014 Nobel Prize in Physics. In his Nobel lecture, Shuji Nakamura gives an overview of this research and the story of his inventions *** .

  相似文献   


15.
Classes of solvable potentials are presented within an standard application of supersymmetric quantum mechanics. Sets of exceptional orthogonal polynomials generated by these solvable potentials are introduced and examined in detail. Several properties of these polynomials including orthogonality conditions, weight functions, differential equations, the Wronskains, possible recurrence relations are also investigated.

  相似文献   


16.
In this paper, an implementation of energetic damping for fermionic transport simulations which respects particle conservation is presented. For this, nonhermitian terms in the Hamiltonian of the system are used. After an explanation of the method, it is demonstrated studying the current over time and I/V characteristics in the noninteracting resonant level model for spinless fermions.

  相似文献   


17.
Uncertainties in successive measurements of general canonically conjugate variables are examined. Such operators are approached within a limiting procedure of the Pegg–Barnett type. Dealing with unbounded observables, we should take into account a finiteness of detector resolution. An appropriate reformulation of two scenarios of successive measurements is proposed and motivated. Uncertainties are characterized by means of generalized entropies of both the Rényi and Tsallis types. The Rényi and Tsallis formulations of uncertainty relations are obtained for both the scenarios of successive measurements of canonically conjugate operators. Entropic uncertainty relations for the cases of position and momentum are separately discussed.

  相似文献   


18.
It was previously argued that the phenomenon of quantum gravitational decoherence described by the Wheeler‐DeWitt equation is responsible for the emergence of the arrow of time. Here we show that the characteristic spatio‐temporal scales of quantum gravitational decoherence are typically logarithmically larger than a characteristic curvature radius of the background space‐time. This largeness is a direct consequence of the fact that gravity is a non‐renormalizable theory, and the corresponding effective field theory is nearly decoupled from matter degrees of freedom in the physical limit . Therefore, as such, quantum gravitational decoherence is too ineffective to guarantee the emergence of the arrow of time and the “quantum‐to‐classical” transition to happen at scales of physical interest. We argue that the emergence of the arrow of time is directly related to the nature and properties of physical observer.

  相似文献   


19.
Ralf Hofmann 《Annalen der Physik》2015,527(3-4):254-264
Presuming that CMB photons are described by the deconfining phase of an SU(2) Yang‐Mills theory with the critical temperature for the deconfining‐preconfining phase transition matching the present CMB temperature K (SU(2)CMB), we investigate how CMB temperature T connects with the cosmological scale factor a in a Friedmann‐Lemaître‐Robertson‐Walker Universe. Owing to a violation of conformal scaling at late times, the tension between the (instantaneous) redshift of reionisation from CMB observation () and quasar spectra () is repealed. Also, we find that the redshift of CMB decoupling moves from to which questions ΛCDM cosmology at high redshifts. Adapting this model to the conventional physics of three flavours of massless cosmic neutrinos, we demonstrate inconsistency with the value Neff ~ 3.36 extracted from Planck data. Interactions between cosmic neutrinos and the CMB implies a common temperature T of (no longer separately conserved) CMB and neutrino fluids. Neff ~ 3.36 then entails a universal, temperature induced cosmic neutrino mass with . Our above results on zre and zdec, derived from SU(2)CMB alone, are essentially unaffected when including such a neutrino sector.

  相似文献   


20.
The quantum dynamics of a moving particle with a magnetic quadrupole moment that interacts with electric and magnetic fields is introduced. Then, it is discussed which conditions the external fields must satisfy so that an analogue of the Landau quantization can be obtained. Finally, by dealing with the lowest Landau level associated with the magnetic quadrupole system, an analogue of the quantum Hall conductivity is obtained.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号