首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We report a diode-pumped intracavity frequency-doubled self-Q-switched and mode-locked Cr,Nd:YAG/KTP green laser with a Z-type cavity, which produces 1.5 W of average power at 532nm with incident pump power 14.2 W. The individual mode-locked green pulse duration is about 560ps with 149 MHz repetition rate. Almost 100% modulation depth of the mode-locked green pulses is achieved at an incident pump power of 4.13 W. The maximum energy of Q-switched green pulse is 19.8μJ. The experimental results of pulse duration and pulse energy of Q-switched green pulse agree well with the theoretical calculations.  相似文献   

2.
We demonstrate a stable Q-switched mode-locked erbium-doped fiber laser(EDFL) operating in dark regime based on the nonlinear polarization rotation technique.The EDFL produces a pulse train where the Q-switching envelope is formed by multiple dark pulses.The repetition rate of the Q-switched envelope can be increased from 0.96 kHz to 3.26 kHz,whereas the pulse width reduces from 211 μs to 86 μs.The highest pulse of 479 nJ is obtained at the pump power of 55 mW.It is also observed that the dark pulses inside the Q-switching envelope consist of two parts:square and trailing dark pulses.The shortest pulse width of the dark square pulse is obtained at 40.5μs when the pump power is fixed at 145 mW.The repetition rate of trailing dark pulses can be increased from 27.62 kHz to 50 kHz as the pump power increases from 55 mW to 145 mW.  相似文献   

3.
We report on the generation of Q-switched and Q-switched mode-locked(QML) pulses in an erbium-doped fiber ring laser by using a polyvinyl alcohol(PVA)-based gold nanorod(GNR) saturable absorber(SA). The PVAbased GNR SA has a modulation depth of ~4.8% and a non-saturable loss of ~26.9% at 1.5 μm. A Q-switched pulse train with a repetition rate varying from 18.70 to 39.85 k Hz and a QML pulse train with an envelope repetition rate tuning from 20.31 to 31.50 k Hz are obtained. Moreover, the lasing wavelengths of the Q-switched pulses can be flexibly tuned by introducing a narrow bandwidth, tunable filter into the laser cavity. The results demonstrate that the GNRs exhibit good optical performance and can find a wide range of applications in the field of laser technology.  相似文献   

4.
Multi-pulse operation of a Kerr-lens mode-locked femtosecond laser   总被引:2,自引:0,他引:2  
Our experimental results show that the presence of a proper amount of negative group velocity dispersion is essential to multi-pulse operation of a Kerr-lens mode-locked femtosecond laser. We demonstrate that the pulse separations and the number of pulses contained within a cavity round trip are strongly dependent on the initial perturbations. The results allow us to get a better understanding on the influences of the convoluted self-phase modulation and intra-cavity dispersions on the stable multi-pulse oscillation in a Kerr-lens mode-locked femtosecond laser.  相似文献   

5.
Our experimental results show that the presence of a proper amount of negative group velocity dispersion is essential to multi-pulse operation of a Kerr-lens mode-locked femtosecond laser.We demonstrate that the pulse separations and the number of pulses contained within a cavity round trip are strongly dependent on the initial perturbations.The results allow us to get a better understanding on the influences of the convoluted self-phase modulation and intra-cavity dispersions on the stable multi-pulse oscillation in a Kerr-lens mode-locked femtosecond laser.  相似文献   

6.
We report an efficient Q-switched laser action based on a semiconductor saturable absorber mirrors (SESAMs) as passively Q-switched laser starter and a Yb:LYSO alloyed crystal as gain material pumped directly by 974nm InGaAs laser diodes. The output pulse duration is measured to be about 7μs, while the average power and the repetition rate of the pulse chain are about 0.92 W and 6.2 kHz, respectively, under 12.5 W absorbed pumping power. The Q-switched mode-locked pulse train is also observed in this setup. The laser performance shows that Yb:LYSO is a promising laser gain medium for laser-diode pumped compact solid-state lasers.  相似文献   

7.
We present a novel 800-nm Bragg-mirror-based semiconductor saturable absorption mirror with low temperature and surface state hybrid absorber, with which we can realize the passive soliton mode locking of a Ti:sapphire laser pumped by 532-nm green laser which produces pulses as short as 37 fs. The reflection bandwidth of the mirror is 3Ohm and the pulse frequency is 107MHz. The average output power is 1.1 W at the pump power of 7.6W.  相似文献   

8.
In this paper, we demonstrate a carrier envelope phase-stabilized Yb-doped fiber frequency comb seeding by a nonlinear-polarization-evolution(NPE) mode-locked laser at a repetition rate of 60 MHz with a pulse duration of 191 fs.The pump-induced carrier envelope offset frequency( f0) nonlinear tuning is discussed and further explained by the spectrum shift of the laser pulse. Through the environmental noise suppression, the drift of the free-running f0 is reduced down to less than 3 MHz within an hour. By feedback control on the pump power with a self-made phase-lock loop(PLL)electronics the carrier envelope offset frequency is well phase-locked with a frequency jitter of 85 m Hz within an hour.  相似文献   

9.
We demonstrated a diode-pumped passively Q-switched mode-locked Nd:YVO4 laser by using a relaxed saturable Bragg reflector (SBR). Stable mode-locked pulse train with the repetition rate of -230 MHz was achieved and the pulse train was modulated by the Q-switched envelope with the repetition rate of -150 kHz. The maximum output of 4 W was obtained under the pump power of 13.5 W. The optical-to-optical efficiency was 30%. We also discussed the transition of each process having emerged.  相似文献   

10.
We report the generation of an 8.5-nJ chirped pulse from a mode-locked all-fiber Yb-doped laser.Modelocking is achieved through nonlinear polarization evolution(NPE) along with spectral filtering.The laser delivers 135 mW of average output power with positively chirped 10.9-ps pulses.The pulse repetition rate is 15.9 MHz,which results in an energy of 8.5 nJ per pulse.The externally dechirped pulse duration is 223 fs,and the pulse energy is 6 nJ,which corresponds to the peak power of~27 kW.  相似文献   

11.
A diode-pumped passively Q-switched mode-locked (QML) intracavity frequency-doubled Nd:GdVO4/KTP green laser with a semiconductor saturable absorber is presented. Nearly 100% modulation depth for the mode-locked green pulses can be achieved at any pump power over 1.92 W. The width of the mode-locked green pulse was estimated to be about 150 ps. The mode-locked pulse interval within the Q-switched envelope of 320 ns and the repetition rate of 97.5 kHz were obtained, at an incident pump power of 4.4 W. The repetition rate of the mode-locked green pulses inside the Q-switched envelope was 140 MHz.  相似文献   

12.
A simultaneous self-Q-switched and mode-locked diode-pumped 946 nm laser by using a Cr,Nd:YAG crystal as gain medium as well as saturable absorber is demonstrated for the first time as we know. The maximum average output power of 751 mW with a slope efficiency of 18.38% is obtained at an intra-cavity average peak power intensity of 4.83 × 106 W/cm2. Under this circumstance, the repetition rate of Q-switched envelopes is 9.63 kHz and the pulse width is about 460 ns. Almost 100% mode-locked modulation depth is obtained at all time in the experiment process whether the incident pump power is low or high. The repetition rate of mode-locked pulses within a Q-switched envelope is 135.13 MHz and the mode-locked pulse width is within 600 ps. The laser produces high-quality pulses in TEM00-mode in the simultaneous self-Q-switched and mode-locked experiment.  相似文献   

13.
We have demonstrated a passively Q-switched and mode-locked Nd:YVO4 laser with an intracavity composite semiconductor saturable absorber (ICSSA). Stable Q-switched and mode-locked pulses with Q-switched envelope pulse duration of 180 ns and pulse repetition rate of 72 KHz have been obtained. The maximum average output power was 1.45 W at 8 W incident pump power. The repetition rate of the mode-locked pulses inside the Q-switched envelope was 154 MHz. Experimental results revealed that this ICSSA was suitable for Q-switched and mode-locked solid-state lasers.  相似文献   

14.
H. Ge  S. Zhao  Y. Li  G. Li  D. Li  K. Yang  M. Li  G. Zhang  K. Cheng  Z. Yu 《Laser Physics》2009,19(6):1226-1229
We present a compact passively Q-switched mode-locked Nd:LuVO4 laser run in a Z-type folded cavity with semiconductor saturable absorber mirror (SESAM). The repetition rates of the passively Q-switched pulse envelope ranges from 22.99 to 141.18 kHz as the pump power increased from 2.372 to 8.960 W. The repetition rates of mode-locked laser pulses in the Q-switched pulse envelope has 111 MHz determined by the cavity length and the mode-locked pulse duration is evaluated to be 257 ps. An average output power of 823.5 mW is achieved at the pump power of 8.96 W, corresponding to an optical conversion efficiency of 9.2%.  相似文献   

15.
By using a-cut Nd:Lu0.15Y0.85VO4 mixed crystal as laser gain medium, a diode-pumped passively Q-switched and mode-locked (QML) laser with a GaAs saturable absorber in a Z-type folded cavity is demonstrated for the first time. The Q-switched mode-locked laser pulses with about 90% modulation depth are obtained as long as the pump power reached the oscillation threshold. The repetition rate of the passively Q-switched pulse envelope ranges from 50 to 186 kHz as the pump power increases from 0.915 to 6.520 W. Under an incident pump power of 6.52 W, the QML pulses with the largest average output power of 694 mW, the shortest pulse width of 200 ns and the highest pulse energy of 3.73 μJ are obtained. The mode-locked pulse width inside the Q-switched envelope is estimated to be about 275 ps. The experimental results show that Nd:Lu0.15Y0.85VO4 is a promising mixed crystal for QML laser.  相似文献   

16.
We present the performance of diode end-pumped Nd:YVO4 laser in Q-switched and Q-switched mode-locking oscillation using a single-walled carbon nanotube based saturable absorber, which was fabricated using similar vertical evaporation technique. The average output power, repetition rate and pulse width of the Q-switched laser output were studied with different output couplers. The maximum average output power was 130 mW. For Q-switched mode-locking operation, the repetition rate of the mode-locked pulses concentrated in the Q-switched envelope was 58 MHz. The repetition rate of the Q-switched envelope maintained at 18 kHz, while the pulse width decreased along with the increasing of pump power. The maximum average output power was 53 mW.  相似文献   

17.
By using a composite semiconductor absorber and an output coupler, we demonstrated a Q-switched and mode-locked diode-pumped microchip Nd:YVO4 laser. With a 350-μm-thick crystal, the width of the Q-switched envelope was as short as 12 ns; the repetition rate of the mode-locked pulses inside the Q-switched pulse was more than 10 GHz. The average output power was 335 mW at a maximum pump power of 1.6 W. Q-switched envelope widths of 21 and 31 ns were also achieved with crystals 0.7 and 1.0 mm thick, respectively.  相似文献   

18.
We have demonstrated passively Q-switched mode-locked all-solid-state Nd:YLF laser with an uncoated GaAs wafer as saturable absorber and output mirror simultaneously. Q-switched mode-locking pulses laser with about 100% modulation depth were obtained. The average output power is 890 mW at the incident pump power of 5.76 W, corresponding to an optical slop efficiency of 20%. The temporal duration of mode-locked pulses was about 21 ps. At the Q-switched repetition rate of 30 kHz, the energy and peak power of a single pulse near the maximum of the Q-switched envelope was estimated to be about 1.6 μJ and 76 kW.  相似文献   

19.
We have demonstrated an efficient and compact passively Q-switched and mode-locked (QML) 1064 nm Nd:YVO4 laser by using a low temperature grown GaAs (LT-GaAs) saturable absorber as well as an output coupler. Stable QML with envelope duration as short as 10 ns and Q-switched repetition rate of 36 kHz was obtained. It is the shortest envelope duration as far as we know, and it is so short that it can be used as Q-switching pulses directly. At 6.9 W of the incident pump power, average output power of 1.24 W was achieved and the corresponding peak power and energy of a single Q-switched pulse were 3.44 kW and 34.4 μJ, respectively. The mode-locked pulses inside the Q-switched pulse envelope had a repetition rate of 780 MHz.  相似文献   

20.
We report a 880 nm LD pumped passive Q-switched and mode-locked Nd:YVO4 laser using a single-walled carbon nanotube saturable absorber (SWCNT-SA). At the pump power of 7.78 W, the average out-put power of 330 mW of Q-switched and mode-locked laser with optical conversion efficiency of 4.2% was generated. The repetition rate and pulse width of the Q-switched envelope were 33 kHz and 5.6 μs, respectively. The repetition rate and pulse energy of the mode-locked pulse within the Q-switched envelope were 80 MHz and 4.1 nJ, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号