首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
商小霞  张立群 《化学学报》1982,40(7):621-628
多价阳离子与NO3-或NO2-作用产生的灵敏的催化电流可用于微量金属离子或NO3-,NO2-的极谱测定,但对产生催化电流的机理并不十分清楚,本文讨论了Yb3+-NO3-(或NO2-)-NH4Cl体系,证明有两种不同性质的电流同时存在.当[Yb3+]远小于[NO3-]或[NO2-]时,以平行催化电流为主;而当[Yb3+]远大于[NO3-]或[NO2-]时则以NO3-或NO2-的催化电还原电流为主要成分. 本文改进了原来提出的一些实验条件,使镱在直流极谱上的测定下限达5×10-8M.  相似文献   

2.
与助催化剂形成异质结,通过调整活性位点的电子结构和电荷输运来提高Ni2P的电催化活性是一种可行的方法。本文成功构建了一种高效的Cu3P/Ni2P异质结催化剂,其中Cu3P本身仅作为助催化剂,通过调节Ni2P的电子转移和表面重构来提高电催化活性。结果表明,在10 mA·cm-2的电流密度下,Cu3P/Ni2P具有优异的析氧反应(OER)活性,过电位为213 mV。结合实验结果和理论计算可知,Cu3P助催化剂可以有效调整Ni中心的电子结构,实现电荷重分布,降低反应能垒,从而显著提高OER催化活性。此外,Cu3P助催化剂诱导的丰富的晶界和晶格畸变促进了表面重构,形成Ni5O(OH)9,为OER提供了有效的活性位点。本工作通过引入助催化剂构建了一种新型异质结电催化剂,为优化过渡金属磷化物的电催化性能提供了一条有效途径。  相似文献   

3.
利用太阳能将CO2转换为高附加值的化学品是解决化石燃料消耗过快与CO2排放过度问题的可行性方案.光电催化CO2还原可以模拟自然光合作用将CO2还原为多碳产物(C2+).然而,光电催化剂的带隙与太阳辐射光谱不匹配以及载流子的快速复合是限制人工光合作用效率的关键因素.前期研究表明,缺陷工程可有效地增加催化剂活性位点,减小半导体的带隙并增强对光子的捕获能力;而异质结的构筑则可有效提升载流子的分离效率.因此,构建具有较好可见光响应的高效半导体异质结催化剂有望实现催化材料对CO2还原能力和产物选择性的提升.本文通过对金属钛板进行电化学阳极氧化,氨气气氛煅烧得到Ti N,然后原位进行部分氧化构筑出结构新颖的Ti O2/Ti N纳米管异质结材料,再进行配体和钯量子点修饰,得到更加高效的催化电极材料Pd/R-Ti O2/TiN,并在三电极系统中研究了其光电催化CO2还原的性能.通过扫描隧道电子显微镜、透射电...  相似文献   

4.
光催化CO2还原制备可再生的碳氢燃料为缓解温室效应、解决能源短缺问题提供了一个可行的办法。然而,单一组分光催化剂的CO2还原活性非常低。一是因为光生载流子的快速复合导致光子效率很低。二是因为CO2的活化需要较高的能垒。对此,研究人员作出了许多改进以提高CO2还原性能。例如,发展S型异质结可以增强载流子的分离和光催化剂的氧化还原能力,引入金属单原子助催化剂可以优化反应热力学。因此,协同利用S型异质结和金属单原子修饰将能同时促进载流子的转移和CO2还原反应过程。本文构建了由单原子Pt负载的g-C3N4和BiOCl组成的Pt-C3N4/BiOCl异质结模型。用密度泛函理论计算研究了其光催化性能,包括几何结构和电子性质的探索、CO2转化过程的模拟。差分电荷密度结果表明g-C3N4中的电子转移至BiOCl,这是由于g-C3  相似文献   

5.
以双氰胺、醋酸锌、四氯化锡、醋酸镉和硫化钠为原料,采用水热法制备了三元金属复合硫化物Zn_(0.11)Sn_(0.12)Cd_(0.84)S_(1.12)(ZnSnCdS)及一系列异质结催化剂ZnSnCdS/g-C_3N_4.采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、紫外-可见光谱仪(UV-Vis)、傅里叶变换红外光谱仪(FTIR)、电感耦合等离子体-质谱仪(ICP-MS)、荧光光谱仪(PL)和X射线光电子能谱仪(XPS)等对催化剂进行了表征.结果表明,ZnSnCdS与g-C_3N_4之间以C—S键紧密结合,构筑了异质结,促进了界面电荷迁移,抑制了光生电子-空穴对的复合.可见光下降解染料罗丹明B(RhB)的结果表明,ZnSnCdS/g-C_3N_4异质结催化剂的光催化性能与单纯g-C_3N_4,ZnSnCdS及双组分硫化物/g-C3N4异质结催化剂相比均有大幅度提高,ZnSnCdS与g-C3N4质量比为4∶1时异质结催化剂表现出最大的速率常数(0.1508 min-1),是单纯g-C_3N_4和ZnSnCdS的32.3倍和4.9倍.其它三元金属复合硫化物如ZnMoCdS,MoNiCdS和NiSnCdS与g-C_3N_4之间也能有效形成异质结,促进电子-空穴对的分离和催化性能的提升.  相似文献   

6.
首先以沉积-沉淀法制备AgBr/TiO2复合催化剂,然后采用离子交换法制备出新型的异质结型AgI/AgBr/TiO2光催化剂.利用XRD和UV-Vis对AgI/AgBr/TiO2光催化剂进行了表征.以甲基橙为染料模型,在可见光条件下(500 W、λ>420 nm)研究了AgI的含量对AgI/AgBr/TiO2催化活性的影响.结果表明,AgI拓展了催化剂的吸收光谱范围;AgI生成量为AgBr的5%时,AgI/AgBr/TiO2的催化活性最高.AgI/AgBr异质结的形成有利于光生电子和空穴的分离,提高AgI/AgBr/TiO2的催化活性.  相似文献   

7.
2,6-二甲酚双波长分光光度法同时测定水中NO3-及NO2-的研究   总被引:3,自引:0,他引:3  
水中NO3-和NO2-的一般光度法同时测定已见报导,但其操作手续均较麻烦。2,6-二甲酚光度法单独测定NO2-或NO2-虽已有报导,可是它们相互干扰。我们采用双波长光度法,测定NO3-和NO2-在H2SO4介质与2,6-二甲酚的反应产物,既免除了它们的相互干扰,又达到同时测定的目的。  相似文献   

8.
采用水热/水浴两步法构筑了p-n型Ni WO4(NWO)/Zn In2S4(ZIS)异质结,研究了不同含量的NWO对ZIS物相组分、形貌结构、能带结构、光谱吸收及光解水析氢性能等的影响,并采用一系列表征手段探讨了NWO/ZIS异质结的光催化机理.结果表明,负载NWO后,ZIS物相组分及形貌结构未发生显著变化,两种材料界面接触紧密且分布均匀;在可见光辐照下,NWO/ZIS异质结光解水析氢性能得到了显著提升,其中,最佳样品NWO-35/ZIS析氢速率达到5204.8μmol·g-1·h-1,为纯相ZIS(1566.4μmol·g-1·h-1)的3.32倍;循环实验结果表明,NWO/ZIS样品具有很好的光稳定性;能带结构和光电子动力学表征结果证实了p-n型异质结内建电场驱动的光生载流子的传输机制.  相似文献   

9.
光生载流子的快速复合制约着BiOBr的光催化性能,通过构建界面紧密结合的异质结可以有效地解决这个问题。在本研究中,通过采用简单的高温高压水热法,首次在二维(2D)BiOBr表面上成功复合了零维(0D)的g-C3N4量子点(CNQDs),并形成了具有紧密接触界面的0D/2D CNQDs/BiOBr S型异质结,主要原因是CNQDs杂环中的π电子与BiOBr产生了相互作用。CNQDs/BiOBr-1.50%复合材料在光照下降解四环素(TC)、环丙沙星(CIP)和产H2O2的表观反应速率常数k值分别是BiOBr的2.02、2.91和1.54倍。在循环测试中,CNQDs/BiOBr-1.50%显示出相对较高的光催化活性和结构稳定性。通过X射线光电子能谱(XPS)分析,明确CNQDs中的π电子与BiOBr具有相互作用,确认了异质结中光生电子的转移方向。CNQDs/BiOBrS型异质结的成功构建使其具有非凡的光催化稳定性和活性。更多活性物质的产生和稳定的催化活性归因于电子和空穴的独特转移机制。CNQDs/BiOBrS型异质结的特殊的电子-空穴转移机理实现...  相似文献   

10.
以双氰胺、醋酸锌、钼酸铵、醋酸镉和硫化钠为原料,采用水热法合成了一系列Zn-Mo共掺杂CdS(Zn-Mo-CdS),并与g-C3N4组成异质结催化剂(Zn-Mo-CdS/g-C3N4)。采用X射线衍射光谱(XRD)、紫外-可见(UV-Vis)光谱、电感耦合等离子体-原子发射光谱(ICP-AES)、电化学阻抗谱(EIS)、X光电子能谱(XPS)等分析手段对制备的催化剂进行了表征。结果表明, Zn-Mo-CdS与g-C3N4之间紧密结合并形成异质结,促进界面电荷迁移,抑制光生电子-空穴对的复合。以可见光下降解染料罗丹明B (RhB)为探针反应考察了催化剂性能。结果表明, Zn-Mo-CdS/g-C3N4异质结催化剂的光催化性能与单纯g-C3N4、Zn-Mo-CdS及双金属硫化物/g-C3N4异质结催化剂相比均有大幅度提高,质量比m(Zn-Mo-CdS)/m(g-C3N4) = 4 : 1时制备的异质结催化剂表现出最大的降解速率常数,是单纯g-C3N4和Zn-Mo-CdS的30倍和10倍。不仅Zn-Mo-CdS,其他三元金属复合硫化物如Mo-Ni-CdS和Ni-Sn-CdS与g-C3N4之间也能有效构筑异质结,促进电子-空穴对的分离和催化性能提升。  相似文献   

11.
开发低成本的半导体光催化剂以实现可见光下高效、持久的光催化分解水产氢是一个非常具有挑战性的课题.近年来,具有高产氢活性的CdS光催化剂引起了人们的研究兴趣.但是光生电子-空穴对快速复合、反应活性位点不足以及严重的光腐蚀等问题,严重地制约了CdS在光催化领域的实际应用.构建S型异质结和负载助催化剂被认为是促进光生电子空穴分离和加速产氢动力学的有效策略.本文通过在低成本的WO3和Ti3C2MXene(MX)纳米片上生长CdS纳米片,设计并构建了具有二维耦合界面的2D/2D/2D层状异质结光催化剂,以实现高效的可见光光催化分解水产氢.首先通过水热煅烧和刻蚀的方法分别制备了WO3和MX纳米片,然后以乙酸镉和硫脲为原料在乙二胺溶剂中通过水热法合成了MX-CdS/WO3层状异质结光催化剂.在可见光下,以乳酸为牺牲剂测试了光催化剂的产氢活性且经过4次连续的循环反应,MX-CdS/WO3体系展现出良好的活性及稳定性.在可见光的照射下,MX-CdS/WO3层状异质结光催化剂最高的可见光光催化分解水产氢速率达到了27.5 mmol/g/h,是纯CdS纳米片的11倍.与此同时,在450 nm的光照下,表观量子效率达到了12.0%.为了深入探讨其高效产氢机理,通过X射线衍射、X射线光电子能谱、原子力显微镜、透射电镜、高分辨电子显微镜等对MX-CdS/WO3体系的组成和结构进行分析.结果表明,实验成功地合成了CdS,WO3和MX三种纳米片及其复合材料.通过紫外-可见漫反射光谱研究了样品材料的光吸收能力.通过表面光电压、稳态及瞬态荧光光谱等研究了材料的电荷载流子复合和转移行为,发现MX-CdS/WO3的光生电子空穴对相比与纯CdS或者二元复合材料具有更高的分离效率.UPS和ESR等表征结果说明,材料内部电场的方向和在光照条件下光生载流子的迁移方向,从而证实了S型异质结和欧姆结的成功构建.综上,在MX-CdS/WO3光催化剂体系中,S型异质结形成较强的界面电场能够有效促进CdS纳米片与WO3纳米片之间光生电子-空穴对的分离.同时,二维Ti3C2MXene纳米片作为辅助催化剂,通过与CdS/WO3纳米片构建欧姆结,进而提供大量的电子转移途径和更多的析氢反应活性位点,使得CdS光催化剂的光催化活性和稳定性得到了很大的提升.通过构建S型内建电场、欧姆结和2D/2D界面可以协同提高CdS纳米片的光催化性能,从而加速光生电子在异质结中的分离和利用.本文所采用基于S型异质结与欧姆结基助催化剂之间的耦合策略可以作为一种通用策略扩展到其它传统半导体光催化剂的改性中,从而推进高效光催化产氢材料的有效合成.  相似文献   

12.
采用累托土为原料,合成铝交联累托土 (Al-PILR),然后分步浸渍负载 (NH4)2S2O8、Dy(NO3)3和 Cu(NO3)2,制成 Cu/Dy/S2O82-/Al-PILR催化剂。 考察该催化剂对 C3H6选择性还原 NO的催化性能,并且利用低角 XRD、BET、Py-IR、IR、TG和SEM等方法,研究催化剂结构与性能的关系。实验结果表明,铝交联剂能很好地撑开累托土的土层,显著增大催化剂的比表面积; S2O82-能明显增加铝交联累托土B(Brönsted)酸的酸量; Dy能进一步增加B酸的酸量,有效提高催化活性和热稳定性。因此, Cu/Dy/S2O82-/Al-PILR催化剂具有良好的催化性能, 最佳催化活性温度为300℃,NO转化率高达80.3%,在有10%水蒸气存在的情况下仍可达77.6%。  相似文献   

13.
通过半导体催化剂利用太阳能分解水制氢被认为是解决人类面临的环境问题和能源危机的有效途径.在众多的半导体光催化剂中,TiO2由于其良好的光化学稳定性、无毒性、丰富的形貌以及低廉的价格,在光催化制氢领域备受关注.然而TiO2的内在缺陷,如较宽的带隙、较窄的光响应范围,光生电子空穴对的快速复合,极大限制了其太阳能制氢效率.构建异质结结构被认为是解决以上问题的一个有效方法,通过将TiO2与另一个半导体复合可以提升催化剂对太阳光的吸收范围,也可降低光生电子空穴对的复合速率.但构建一个成功的异质结结构不仅要满足上述的要求,还需要保留异质结催化剂体系中光生电子和空穴的氧化还原能力.研究表明,S型异质结是将两个具有合适能带结构的半导体进行耦合,由于费米能级的差异,两个半导体间将发生电子转移,从而引起能带弯曲并形成内建电场.光照条件下,具有较弱还原能力的光生电子在内建电场和能带弯曲的作用下与较弱氧化能力的光生空穴复合,实现异质结催化剂体系中各个半导体内部光生载流子有效分离的目标,同时保留了异质结催化剂体系中较强氧化能力和较强还原能力的光生电子和空穴,进而实现光催化活性的提高.本文采用水热合成方法,将具有更强还原能力和可见光响应特性的半导体(ZnIn2S4)原位生长在TiO2纳米纤维表面,构建了1D/2DTiO2/ZnIn2S4S型异质结光催化剂.最优比例的TiO2/ZnIn2S4复合材料表现出优越的光催化制氢活性(6.03mmol/h/g),分别是纯TiO2和纯ZnIn2S4制氢活性的3.7倍和2倍.TiO2/ZnIn2S4复合材料光催化活性的提高可以归因于紧密的异质结界面、光生载流子的有效分离、丰富的反应活性位点以及增强的光吸收能力.通过原位XPS和DFT计算研究了异质结内部光生电子的转移机制.结果表明,在光照条件下电子由TiO2向ZnIn2S4迁移,遵循了S型异质结内部电子的转移机制,实现了TiO2和ZnIn2S4内部光生载流子的有效分离,同时保留了具有较强还原能力的ZnIn2S4价带电子和较强氧化能力的TiO2导带空穴,从而显著提升光催化制氢效率.综上,本文制备的TiO2/ZnIn2S4S型异质结光催化剂很好地克服了TiO2在光催化制氢领域所面临的诸多障碍,为设计和制备高效异质结光催化剂提供了新的思路.  相似文献   

14.
董莹  王勇  邢欢欢  屈建莹 《电化学》2015,21(1):85-90
以壳聚糖为保护膜、玻碳为基底,用纳米Au和Fe3O4磁性纳米粒子构建了新型亚硝酸盐(NO2-)传感电极. 实验表明,该传感电极对NO2-有良好的电催化氧化活性,NO2-浓度(5.0×10-6 ~ 2.0×10-3 mol·L-1)与氧化峰电流之间呈良好的线性关系(R = 0.9996),检出限7.1×10-7 mol·L-1, 其灵敏度高、选择性好、重现性好.  相似文献   

15.
氢能具有能量密度高、清洁无污染等优势,被认为是理想的能源,受到越来越多的关注.利用太阳能和风能等可再生能源电解水制氢是一种极具发展前景的可以规模化获取清洁氢气的能源技术,其挑战在于如何降低电能消耗并实现稳定地高速电解制氢.由于电解水阳极析氧反应(OER)涉及四电子转移,动力学过程缓慢,是电解水过程的决速步骤.因此,开发高效、廉价、稳定的OER电催化剂对于推动电解水制氢的应用至关重要.硫族化合物具有良好的导电性,对OER中间体表现出适宜的吸附/脱附能力,是一类高活性的析氧电催化剂.但在析氧反应中硫族化合物会不可避免地发生氧化,导致其结构坍塌,使其性能发生大幅衰减.NiOOH被认为是Ni(OH)2、NiSe和NiS等镍基电催化剂析氧过程中的真实催化活性位点,在析氧反应过程中表现出优异的稳定性.因此,结合硫族化合物的高催化活性和羟基氧化物的高稳定性,将有望获得高效稳定的析氧电催化剂.本文提出了一种选择性硒掺杂的策略,实现了不锈钢基底上NiFe2O4/NiOOH异质结的选择性硒掺杂,获得了硒掺杂浓度可调的NiFe2O4-xSex/NiOOH异质结电催化剂,大幅提升了其电催化析氧性能.采用X射线衍射技术、拉曼光谱、扫描电镜和透射电镜技术等对NiFe2O4/NiOOH异质结的结构、形貌和组分进行了表征.利用X射线光电子能谱和透射电镜的能量色散光谱仪对硒掺杂产物的元素组成和分布进行了分析.结果表明,硒元素仅掺杂到NiFe2O4纳米颗粒中,而NiOOH纳米片骨架保持不变,保证了催化剂在析氧过程的稳定性.NiFe2O4-xSex/NiOOH异质结电极在1 M KOH溶液中表现出较好的析氧性能,达到10和500 mA cm?2电流密度所需要的过电位分别仅为153和259 mV,塔菲尔斜率为22.2 mV dec?1.更重要的是,NiFe2O4-xSex/NiOOH电催化剂的电化学性能稳定性,计时电流测试表明,在10~400 mA cm?2电流密度下可稳定工作.稳定性测试表明,催化剂在100 mA cm?2的电流密度下可稳定工作至少300 h.电催化过程研究表明,选择性硒掺杂提高了界面间电荷输运能力,改善了电极表面的浸润性,优化了活性位点的电子结构,从而大幅提高催化剂的电催化性能.密度泛函理论计算结果表明,硒掺杂会导致NiFe2O4表面晶格发生畸变,显著改善了反应中间体的吸附过程,因此明显降低了析氧反应决速步骤的能垒.本研究结果将为未来探索高效和稳定的电催化剂提供新的研究思路.  相似文献   

16.
周澳  郭伟健  王月青  张进涛 《电化学》2022,28(9):2214007
电解水是有效的产氢方式之一, 开发具有高催化活性的电极材料是当前电解水的研究热点,但仍面临诸多挑战。 本研究报告了一种通过焦耳热技术快速制备多金属异质结构, 并将其用作电解水的双功能电催化剂, 展现出优异的电解水催化活性。通过焦耳热处理三种金属前驱涂覆的碳布, Mo2C和CoO/Fe3O4异质结构形成。当其用作析氢(HER)和析氧(OER)的双功能催化剂时, 仅需121 mV和268 mV的过电位,可以实现10 mA·cm-2的电流密度。当用于两电极电解水时, MoC/FeO/CoO/CC作为阳极和阴极催化剂表现出优异的电催化性能和长期稳定性, 仅需1.69 V即可实现10 mA·cm-2的电流密度, 并且展现出25小时的稳定性。本研究通过简单、 快速的焦耳热技术实现了双金属/多金属异质结构的构筑,并应用于高效水电解,为合理设计多金属异质结构提供指导。  相似文献   

17.
人工光合作用可直接将二氧化碳转化为一系列碳氢化合物,实现大气中的碳循环,被视为一种既能解决能源短缺又能减少温室气体,进而改善人类生存环境的新型绿色技术.光催化二氧化碳还原体系需要合适的耦合氧化还原反应,以及对外界光源的有效利用以产生足够电子参与反应,因此构建高催化活性和高选择性的催化体系仍然面临着巨大挑战.此外,二维纳米结构(2D)由于具有比表面积大、离子的迁移路径短以及独特的平层电子转移轨道等特性,被证实有利于光催化还原CO2过程.其中,Bi3NbO7特殊的片层结构和合适的能带位置,使其在光催化还原CO2反应中表现出良好的催化性能.然而,Bi3NbO7的光生载流子易复合及反应中光腐蚀严重等缺陷导致其光利用率较低,限制了其实际应用.因此,构建S-型异质结是提高复合材料光催化活性的一种有前途的策略.S-型异质结不仅能有效地分离光生电子和空穴,而且这一电子转移过程赋予了复合物最大的氧化还原能力.同时,S-型光催化体系不仅拥有同样的强氧化和强还原能力,还可显著抑制副反应的发生及副产物的产生,有利于CO2还原反应的高选择性进行.本文利用简易的溶剂热法制备了一系列S-型Bi3NbO7/g-C3N4(BNO/UCN)异质结光催化剂,与其纯组分催化剂相比,表现出优异的光催化还原CO2活性,g-C3N4含量为80wt%的BNO/UCN-3光催化剂催化CO2生成CH4产率为37.59μmol·g-1h-1,是g-C3N4的15倍,CH4选择性为90%;且循环反应10次后仍保持较高的活性及CH4选择性.光催化活性及选择性的显著增强是由于二维分布的纳米结构和S-型电荷转移路径.在可见光照射下,界面内建电场、带边缘弯曲和库仑相互作用协同促进了复合物相对无用的电子和空穴的复合.因此,剩余的电子和空穴具有较高的还原性和氧化性,使复合材料具有较高的氧化还原能力.自由基捕获实验、电子顺磁共振实验和原位X射线光电子能谱实验结果表明,光催化剂中的电子迁移遵循S-型异质结机理.综上,本文不仅为新型S-型异质结CO2还原光催化剂的设计和制备提供了新方法,而且为未来解决能源短缺及实现碳中和目标提供一定的实验及理论依据.  相似文献   

18.
过渡金属氧化物是一种具有高效催化活性的电解水析氧反应催化剂,但低电子电导率限制了其催化活性,将活性纳米材料与导电基质材料复合,是构筑高性能电极材料或电化学催化剂的有效途径。采用溶剂热法制备了负载在C3N4上的聚合卟啉,经Co元素修饰和热处理后得到Co3O4/NC催化剂,采用XRD、SEM、TEM、XPS和FT-IR等方法对催化剂的物理化学性质进行表征。结果表明,Co3O4/NC-600具有超小纳米Co3O4结构,且其含氮量高,吡啶N与Co之间产生了协同作用,催化剂在OER反应中表现出良好的催化性能,其Tafel斜率仅为66.4 mV/dec,达到10 mA/cm2的电流密度所需的过电势为343.3 mV。  相似文献   

19.
研究影响电催化氧还原反应活性的因素对于合理设计高效的氧还原反应催化剂至关重要。调节催化剂电子结构通常被用于精确调控电催化氧还原反应活性。然而, 该反应发生在液/气/固界面, 很少有报道调控分子催化剂的亲疏水性来提高其催化活性。在此, 我们报道了两种钴卟啉NO2-CoP(5,10,15,20-四(4-硝基苯基)钴卟啉)和5F-CoP(5,10,15,20-四(五氟苯基)钴卟啉)并研究了其电催化氧还原反应性能。通过同时调控meso-位取代基的电子结构和亲水性能, NO2-CoP显示出比5F-CoP更高的电催化氧还原反应活性, 其半波电位向阳极方向移动近60 mV。NO2-CoP比5F-CoP具有更好的亲水性。理论计算表明, NO2-CoP比5F-CoP更容易有效地与O2分子结合形成CoIII-O2·-。这项工作提供了一个简单而有效的策略, 通过使用吸电子和亲水取代基来提高钴卟啉的氧还原反应活性。该策略对于设计和开发其他用于电催化的分子催化剂体系也具有重要的启发意义。  相似文献   

20.
分别以乙二醇/去离子水为溶剂,通过溶剂热/水热法分别制备了具有不同主导晶面的BiOIO3/{110}BiOCl和BiOIO3/{001}BiOCl异质结。采用X射线衍射、扫描电子显微镜、能量色散谱和紫外可见漫反射光谱对制备的BiOIO3/BiOCl光催化剂进行了表征。在可见光照射下,通过对罗丹明B和苯酚水溶液的光催化降解,考察了BiOIO3/BiOCl异质结的光催化活性。结果显示25%BiOIO3/{110}BiOCl异质结具有最高的光催化效率。BiOIO3/{110}BiOCl较好的光催化性能是由于其在可见光区较强的光吸收,以及异质结结构和BiOCl所具有的(110)主导晶面有利于光生载流子的分离。超氧自由基(·O2-)和空穴(h+)是光催化过程中的主要活性物质。此外,根据实验结果探讨了光催化性能增强的机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号