首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
羧酸及其衍生物和二氧化碳中羰基的还原无论在基础研究中还是在工业生产上都是最重要的转化之一.在环境问题日益严峻的今天,以氢气作为还原剂实现这些化合物的还原具有极大的吸引力.由于均相催化反应具有反应条件温和、活性高及催化体系易于调节等优点,发展高效、高选择性的均相催化氢化体系来实现这些羰基化合物的还原成为了研究的热点.近年来,过渡金属与不同类型配体形成的催化体系在羧酸衍生物和二氧化碳的氢化反应中的应用得到了深入的研究,取得了一些重要的进展.其中,过渡金属与1,1,1-三(二苯基膦基甲基)乙烷(triphos)形成的催化体系在多种类型羧酸及其衍生物和二氧化碳的氢化中表现出了独特的反应活性和选择性.本文主要介绍triphos与过渡金属钌、钴和铜形成的催化体系在羧酸及其衍生物和二氧化碳的氢化反应方面取得的进展以及相关反应机理的探讨.  相似文献   

2.
孙伟  朱守非 《有机化学》2023,(10):3339-3351
过渡金属催化烯烃硅氢化反应已成为最重要、最基础的均相催化反应之一,但是该类反应在工业应用中仍依赖贵金属催化剂.铁系金属在地壳中储量丰富、廉价易得,且生物兼容性好,作为催化剂具有诸多优势,但是在催化烯烃与三级硅烷,特别是涉及有机硅工业生产应用的几类三级硅烷的硅氢化反应上,还存在较大的差距,尚无法替代贵金属催化剂用于大规模工业生产.发展新型铁系金属催化剂,实现烯烃与三级硅烷高效高选择性的硅氢化反应,深入研究催化剂对反应活性和选择性调控的规律,已成为热点研究领域,取得了一系列重要进展.系统梳理了铁系金属催化烯烃和三级硅烷的硅氢化反应的研究进展,探讨了这一领域目前面临的挑战,并展望了该领域未来发展的方向.本文讨论的研究局限于均相催化体系,不包含非均相催化体系.  相似文献   

3.
正烯基硅烷具有低毒、稳定、易于操作及转化等优点,在有机合成中发挥着重要的作用.炔烃的硅氢化反应是制备烯基硅烷最简单和有效的方法,目前工业上此类反应主要是依靠贵金属催化来实现,而锰催化的炔烃硅氢化反应尚未见报道.中国科学院化学研究所王从洋课题组首次实现了锰催化的炔烃立体选择性硅氢化反应.通过采用单核  相似文献   

4.
硅氢加成是有机硅化学中的重要反应,多种过渡金属包括铁、铑、钌、钯、铂等的配合物对不饱和化合物的硅氢加成均有高的催化活性,尤其在羰基化合物的硅氢化反应中应用广泛.由于有机硅烷可以为包含一个Si—H键的叔硅烷、二个Si—H键的仲硅烷或三个Si—H键的伯硅烷,羰基化合物的硅氢化产物会随硅烷和过渡金属配合物的不同而出现差异.指出了羰基化合物硅氢加成反应的几种机理及其在不同金属配合物和硅烷参与反应时的适用性.重点讨论了Rh,Ru,Fe,Ir反应机理类型和影响条件.此外,描述了部分主要中间体和过渡态以及相关的能量参数,并对第VIII族过渡金属配合物催化羰基化合物硅氢化反应机理的研究进行了展望.  相似文献   

5.
过渡金属络合物催化的均相不对称氢化反应是合成手性化合物的重要方法之一,目前主要集中于钌、铑、铱和钯等贵重过渡金属催化体系,这些贵重过渡金属催化体系面临着地球储量有限、价格昂贵和重金属污染环境等问题,因而发展地球储量丰富、价格低廉、无毒或低毒且对环境友好的铁、钴、镍和铜的均相不对称氢化反应催化体系符合现代化学可持续发展的要求和趋势.简要综述了近些年来廉价金属镍催化的均相不对称氢化反应研究领域的新进展,基于前手性不饱和化合物双键的不同类型,即碳-氧双键(C=O)、碳-碳双键(C=C)以及碳-氮双键(C=N)等,依次介绍它们的研究现状,目前已经取得了突破和可观的研究成果,系统地分析了镍催化体系中催化氢化不同类型底物的优势与不足,并展望了未来的研究方向.  相似文献   

6.
季益刚  吴磊  范青华 《化学学报》2014,72(7):798-808
近年来,金属/金属氧化物纳米粒子催化的不对称氢化和氢转移反应已经成为催化领域的前沿和研究热点之一. 金属/金属氧化物纳米粒子的催化模式类似于“纳米反应器”,底物可以通过有机包覆层扩散至催化中心,局部的高催化剂浓度通常可以极大地提高催化反应转换数(TON)和转化频率(TOF). 在以纳米金属为催化活性中心方面,Orito纳米铂体系获得最多的关注,科学家们从手性修饰剂的结构改造、催化剂载体的选择、不同的反应介质、纳米催化剂的形貌和催化反应机理等方面开展了较为系统的研究,并取得重要进展. 此外,纳米钯、铑、钌、铱和铁等金属纳米催化剂也在烯烃、酮和亚胺等化合物的不对称氢化和氢转移反应中表现出良好的催化性能,特别是纳米铱和铁催化剂已获得95%以上的对映选择性. 在金属/金氧化物纳米粒子为催化剂载体方面,其催化不对称氢化及氢转移反应的效率及对映选择性可与均相催化剂相媲美,同时还解决了均相催化剂难于回收再循环的缺陷. 本文简要介绍了近年来手性金属纳米催化剂在不对称氢化和氢转移反应领域的研究进展,讨论了相关反应的催化机理,并对该领域仍存在的问题和未来的发展方向进行了展望.  相似文献   

7.
刘宇珂  周莉  孙京  周明东 《化学通报》2020,83(8):690-697
二氧化碳是一种来源丰富的可再生资源,科研工作者一直致力于开发能够高效转化二氧化碳的催化体系。氮杂环卡宾在有机化学中是一类非常重要的催化剂,利用氮杂环卡宾-过渡金属配合物催化实现二氧化碳的高效化学转化受到了人们的广泛关注。本文主要根据氮杂环卡宾-过渡金属配合物进行分类,总结归纳了近年来氮杂环卡宾-过渡金属配合物催化二氧化碳羧化反应的研究进展。  相似文献   

8.
亮点介绍     
正钴催化的高效高对映选择性烯烃马氏硅氢化反应J.Am.Chem.Soc.2017,139,9439~9442手性有机硅烷在有机合成和材料领域是一类非常重要的合成单元.在现有的合成有机硅烷的方法中,烯烃硅氢化反应是最重要的方法之一.然而这类反应所用的催化剂基本为贵金属催化剂,同时需要使用过量的含有卤素的硅烷试剂,这降低了反应的官能团容忍性,也大大限制了反应的实用性.所以,发展一种地球丰产金属催化的烯烃的不对称马氏硅氢化反应来构建手性硅烷是非常有意义的.浙江大学化学系陆展课题组报道了一种钴催化高效合成手  相似文献   

9.
手性二茂铁膦配体在不对称催化反应中的应用   总被引:4,自引:0,他引:4  
综述了手性坏茂铁膦配体的过渡金属配合物催化不对称氢化、硅氢化、交叉偶联、环加成、Aldol等反应的最新进展,参考文献56篇。  相似文献   

10.
亮点介绍     
《有机化学》2013,(6):1352-1354
铁催化的烯烃硼氢化反应Angew.Chem.Int.Ed.2013,52,3676~3680烷基硼试剂是一类非常重要的有机合成中间体,而烯烃的硼氢化反应是生成硼试剂的重要途径.在过去的三十年里,过渡金属催化的烯烃硼氢化反应已经取得了丰硕的成果.但大部分体系涉及Rh,Ir,Ru和Pd等贵金属催化剂.近年来,以铁为代表的第一周期过渡金属元素在均相催化领域得到广泛发展,例如,铁络合物在烯烃氢化和硅氢化方面显示出优秀的催化效能.中国科学院上海有机化学研究所黄正课题组最近实现了铁催化的烯烃硼氢化反应,他  相似文献   

11.
陈良凤  王卓  康鹏 《催化学报》2018,39(3):413-420
光驱动二氧化碳还原实现可再生能源转化近年来引起普遍关注.利用小分子金属配合物电催化剂和吸光半导体材料构建的光电催化体系兼具电催化剂的高选择性和光电极的高光电转化效率等优点,在能源催化领域的应用日益广泛.已有将贵金属配合物催化剂用于光电催化二氧化碳还原的研究报道,但催化剂成本较高且制备方法不简便,在规模化实际应用中受到局限.基于早期的研究报道,我们发现非贵金属多联吡啶铁钴镍配合物在乙腈电解质中能高选择性电催化还原二氧化碳.结合半导体材料的特异性电荷分离性能从而将光能高效转化为电能驱动催化反应进行,我们选择廉价且易于制备的多联吡啶钴配合物催化剂,利用半导体硅晶片光电极,实现了均相体系二氧化碳的高效光电催化还原.我们采用电化学循环伏安法和恒电位电解法分别研究了催化剂在干燥和加水电解质环境中的催化还原行为,并且进一步研究了微量质子源的加入对半导体界面催化过程的影响,从而提出一种能改善半导体光电催化体系选择性的新方法.首先我们构建了电化学三电极体系,研究了在暗环境下三联吡啶钴和二联吡啶钴这两种配合物催化还原二氧化碳的电流密度和电解产物分布情况.由循环伏安曲线发现,这两种配合物都有两组催化还原峰,第二个基于吡啶配体还原的峰具有明显的催化特性.少量水的加入能进一步增加催化电流强度,而三联吡啶钴配合物的催化增强效果更加显著.在变扫速条件下将电流密度对扫速平方根进行归一化处理,发现无论在干燥环境还是少量加水环境下,两种催化剂的归一化电流密度均随扫速降低而明显增强,证明了催化剂具有电催化特性.推测水的催化增强作用可能与质子化电催化过程活性中间体有关.恒电位电解结果说明电催化产物以一氧化碳为主.基于上述研究,我们构建了光电化学三电极体系,以单晶硅片为工作电极,研究了在光照环境下这两种配合物催化还原二氧化碳的电流密度和电解产物分布情况.研究发现,催化剂对二氧化碳仍具有催化活性,光电压为400 m V.不同于硅线电极加水导致产氢,改用少量甲醇做质子源后,光电流强度进一步增强,竞争性产氢受到了抑制,从而使一氧化碳的法拉第效率得到显著提高,分别优化为94%和83%,并且光电流在14h内保持稳定.推测甲醇质子源的催化增强作用可能是与改变光电极液接界面传质动力学过程有关.  相似文献   

12.
过渡金属催化高选择性膦氢化反应   总被引:1,自引:1,他引:0  
本文总结了过去几十年特别是近15年来过渡金属催化下各种含磷-氢键的膦氢化合物对炔烃的高选择性膦氢化反应,详尽叙述了其发现、发展和现状.自1996年来,过渡金属催化高选择性膦氢化反应研究工作发展迅速,各种高选择性膦氢化反应不断开发,目前已具有底物适用范围广、过渡金属催化剂活性高、反应选择性高、原子经济性高、以及能满足不同合成需求等优点,并逐步向反应条件温和化、金属催化剂简单化、无配体化、合成步骤简易化以及原料催化剂成本低价化方向发展.虽然如此,至今仍缺乏关于本研究全面的综述和介绍,希望本文可以弥补文献缺陷,对过渡金属催化高选择性膦氢化反应研究有个客观全面的介绍.过渡金属催化烯烃的不对称膦氢化反应合成碳手性或磷手性的光学活性有机磷化合物作为相关研究中的起步最晚的分支,本文也将作阶段小结.  相似文献   

13.
硅氢化反应可以构建Si—C、Si—O、Si—N键,是有机硅化学中的重要反应,通过研究筛选合适的催化体系设计适当的单体进行硅氢化聚合来构建新型的大分子进而制备新的高分子材料是现在高分子化学发展的重要方向之一。本文综述了近几十年硅氢化聚合的研究进展,根据硅氢化聚合单体官能团的种类与数目,分为烯烃的硅氢化聚合、炔烃的硅氢化聚合、醛酮的硅氢化聚合以及非线性硅氢化聚合四个部分进行叙述,重点介绍不同结构的单体所得聚合物的分子量和性质的差异,通过对这方面的总结与分析,希望能够给予从事相关工作的科研工作者一定的思路和启发。  相似文献   

14.
杨晓娜  郭宏宇  周荣 《有机化学》2023,(8):2720-2742
有机硅化合物具有重要用途,被广泛应用于材料科学与药物化学等领域.因此,有机硅试剂参与的化学转化一直倍受关注.近年来,可见光催化迅速发展,为有机合成化学提供了新的机遇.在光氧化还原体系下,有机硅试剂可以经由氢原子转移(Hydrogen atom transfer,HAT)或单电子转移(Single electron transfer,SET)过程转化为硅自由基或碳自由基进行反应,具有条件温和、选择性好和原子经济性高等优势.根据反应类型不同,主要综述了有机硅试剂作为硅自由基前体参与的烯(炔)烃硅氢化反应、烯(炔)烃双官能化反应、氮杂芳烃的硅基化反应,以及有机硅化合物作为碳自由基前体参与的亲核加成反应、Minisci反应、均裂取代反应和过渡金属介导的交叉偶联反应.  相似文献   

15.
宋国强  霍利岭  李竞草 《化学通报》2021,84(11):1186-1190
过渡金属催化C-H键活化的硅氢化反应在材料科学和合成化学领域里具有重要意义。有机硅化合物在纺织、橡胶、机械、日化等材料领域有广泛应用,此外,它还是重要的有机合成中间体,作为亲核试剂应用到Hiyama偶联反应,反应具有经济、高效、环境友好等特点。近些年来,很多课题组在该领域进行研究,并取得了一定的成果[1]。我们将从过渡金属催化芳基/烷基C-H键活化的硅氢化反应出发,介绍近些年在此领域的研究进展。  相似文献   

16.
烯烃的不对称硅氢化反应作为合成手性仲醇的一种重要方法,受到了国内外众多学者的关注.研究表明,钯-单膦催化剂对该类反应有着优异的催化活性和选择性.由于结构稳定、易于合成及修饰、催化性能独特等优点,手性单膦配体取得了迅速的发展.其中,基于二茂铁骨架的平面手性膦配体、基于联芳基骨架的轴手性膦配体以及手性亚磷酰胺酯配体在烯烃的不对称硅氢化反应中取得了优异的催化效果.详细总结了近年来钯-单膦催化剂催化的烷基烯烃、苯乙烯及其衍生物、1,3-二烯烃等底物的不对称硅氢化反应研究进展,并对其发展前景进行了展望.  相似文献   

17.
综述了Fe、Ru、Ir和Ni等过渡金属的氢化物在CO_2活化、氢化、硼氢化和硅氢化反应中的应用,重点阐述了CO_2氢化、硼氢化和硅氢化反应的反应机理及反应条件的优化.  相似文献   

18.
雷耀辉  李弘  何炳林 《有机化学》2000,20(4):464-469
评述了近年来手性金属配合物催化的前手性羰基化合物的不对称硅氢化反应研究进展。  相似文献   

19.
评述了近年来手性金属配合物催化的前手性羰基化合物的不对称硅氢化反应研究进展。  相似文献   

20.
超临界CO2中醇类的分子氧氧化   总被引:1,自引:0,他引:1  
本文以催化剂体系为主线,介绍了超临界二氧化碳中以分子氧代替化学计量氧化荆的醇类清洁氧化技术的研究进展.分析了所研究的催化剂体系的催化性能,主要有钯、铂、钌、金等金属催化剂以及杂多酸催化剂体系;介绍了超临界二氧化碳体系中相行为的影响.指出超临界二氧化碳中醇类清洁氧化技术的研究才刚刚起步,其中高效催化剂体系的开发是超临界二氧化碳中醇类清洁氧化技术能否工业化的关键.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号