首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A new process enabling the synthesis of zinc oxide (ZnO) and Al-doped ZnO nanowires (NWs) for photosensing applications is reported. By combining atomic layer deposition (ALD) for the seed layer preparation and electrodeposition for the NW growth, high-quality ZnO nanomaterials were prepared and tested as ultraviolet (UV) sensors. The obtained NWs are grown as arrays perpendicular to the substrate surface and present diameters between 70 and 130 nm depending on the Al doping, as seen from scanning electron microscopy (SEM) studies. Their hexagonal microstructure has been determined using X-ray diffraction and Raman spectroscopy. An excellent performance in UV sensing has been observed for the ZnO NWs with low Al doping, and a maximal photoresponse current of 11.1 mA has been measured. In addition, initial studies on the stability have shown that the NW photoresponse currents are stable, even after ten UV on/off cycles.  相似文献   

2.
Photoconductive UV Detectors Based on ZnO Films Prepared by Sol-Gel Method   总被引:4,自引:0,他引:4  
Highly c-axis oriented ZnO thin films were deposited on single crystal Si (111) substrates by sol-gel method. The photoconductive UV detectors based on ZnO thin films, being a metal-semiconductor-metal (MSM) structure with interdigital (IDT) configuration, were fabricated by using Au as contact metal. The characteristics of dark and photocurrent of the UV detector, the UV photoresponse of the detector were investigated. The linear current-voltage (I-V) characteristics under both forward and reverse bias exhibit ohmic metal-semiconductor contacts. Under illumination using monochromatic light with a wavelength of 365 nm, photo-generated current arrived at 44.89 μ A at a bias of 6 V. The detector exhibits an evident wide-range spectral responsivity and shows a trend similar to that in photoluminescence (PL) spectrum. PL spectrum of detector exhibits two peaks, one is the near band edge emission, and another is the deep-level emission in the visible region.  相似文献   

3.
ZnO film-based ultraviolet (UV) detector was fabricated by photoassisted peak force tunnel atomic force (PFTUNA) on fluorine tin oxide (FTO) substrate. The PFTUNA current in dark and in UV light was ~0.1 and 2.0 nA, respectively. The UV sensitivity (photocurrent/dark current) is more than 20. The response time and the recovery time are ~0.12 and 0.32 s, respectively. The UV sensing mechanism is that the holes will transport to the ZnO surface to capture the adsorbed oxygen ions to weaken the depletion layer under UV illumination. The PFTUNA current between the tip and the ZnO film is consistent with the Richardson–Schottky (RS) thermionic emission model.  相似文献   

4.
制备了石墨炔修饰的金属-半导体-金属结构的ZnO紫外探测器,研究了不同旋涂次数的石墨炔修饰对探测器性能的影响。实验结果表明,石墨炔修饰的探测器比未修饰器件的光电流提高4倍,暗电流降低2个数量级,同时探测器的响应度和探测率也明显提高,其中旋涂2次的石墨炔修饰的器件特性为最优。在10 V偏压下,旋涂2次的石墨炔修饰的探测器响应度高达1759 A·W−1,探测率高达4.23× 1015 Jones,这是迄今为止报导过的溶胶-凝胶法制备的ZnO紫外探测器的最高值。经过对探测器各项性能的测试分析可知,石墨炔修饰的ZnO探测器性能的提高归因于石墨炔良好的空穴传输特性。暗环境下ZnO与石墨炔界面处形成p-n结,使探测器的暗电流大幅降低;光照条件下光生空穴在石墨炔中聚集,减少了电子空穴对的复合,有效提高了器件的光电流。由于石墨炔修饰减少了ZnO表面的氧分子吸附和解吸附过程,器件的响应速度也明显加快。  相似文献   

5.
通过水热法在长有ZnO籽晶层的柔性聚酰亚胺(PI)衬底上生长了整齐的ZnO纳米棒,ZnO纳米棒的晶体结构和表面形貌通过X射线衍射(XRD)、扫描电子显微镜(SEM)等进行表征.通过静电吸附方式,将葡萄糖氧化酶(GOx)固定在其表面.分别对GOx及修饰前后的ZnO纳米棒进行了紫外-可见光谱表征,发现修饰后存在ZnO的吸收峰和GOx的特征吸收峰,表明GOx固定在ZnO表面.通过对修饰样品进行傅里叶变换红外(FTIR)光谱测试发现了与GOx相关的吸收峰,这进一步表明GOx仍保持生物活性.最后在循环伏安曲线的测试中,这种在柔性衬底上制备的生物酶电极表现出非常灵敏的电流响应,为制备柔性葡萄糖生物传感器奠定了实验基础.  相似文献   

6.
In this paper, we used green and hydrothermal methodology to prepare zinc oxide (ZnO) nanoflakes (NFs) with jute stick extract (J–ZnO NFs) as growth substrate. The prepared materials were characterized using different analytical techniques including ultraviolet–visible spectroscopy (UV–vis), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The characteristic absorption peak for ZnO NFs and J–ZnO NFs were observed from the UV–vis spectrum at 373 and 368 nm respectively. The hexagonal wurtzite crystal structure of ZnO NFs and J–ZnO NFs was confirmed by XRD analysis. FESEM and TEM analyses of synthesized J–ZnO NFs confirmed their NFs shape and collectively flower-like structure formation by the assembly of NFs of J–ZnO on cellulose of jute stick extract substrate. The FTIR analysis revealed the functional groups of jute stick extract biomolecules, mainly cellulose, are responsible for the formation of collectivel flower like J–ZnO NFs structure. The XPS analysis revealed the surface and chemical compositions (Zn, C, and O) of J–ZnO NFs. The photocatalytic performance of ZnO NFs and J–ZnO NFs samples was carried out by the degradation of methylene blue (MB) dye solution under UV light irradiation. The degradation efficiency of ZnO NFs and J–ZnO NFs was obtained 79 % and 89 %, respectively, for 5 h. Notably, the degradation efficiency of the J–ZnO NFs was 98 % after 8 h of irradiation, which is very inspiring. The both NFs exhibited first-order kinetics with MB photodegradation. We also examined the possible antibacterial activity of both samples against Escherichia coli (E. coli) pathogens, which demonstrated a significant result with a 17 mm and 19 mm zone of inhibition by ZnO NFs and J–ZnO NFs respectively.  相似文献   

7.
The application of transparent conductive films in flexible electronics has shown promising prospects recently. Tannic acid(TA) was successfully applied to modifying the surface of polydimethylsiloxane(PDMS) to fhbricate highly flexible, transparent and conductive Ag nanowires(NWs) based films. TA modification transformed the PDMS surface from hydrophobicity into hydrophilicity without decreasing the transparence. A sheet resistance(Rs) of 80 Ω/cm^2 with an optical transmittance of 94% was achieved, which was superior to that of indium tin oxide(ITO) films. More importantly, the TA layer enhanced the interaction between Ag NWs and the PDMS substrate. The Ag NWs films on TA modified PDMS substrate exhibited excellent stability in Rs when subjected to a bending test.  相似文献   

8.
4-amino-2-iminodithiole derivatives were synthesised via multi-component reactions of tetramethyl thiourea, isothiocyanates and alkyl bromides in the presence of ZnO nanorods (ZnO-NR) as the catalyst in water at ambient temperature. These reactions provide low yields without catalysts. The catalyst exhibited significant reusable activity.  相似文献   

9.
Ag nanoparticles supported on the surface of three-dimensional (3D) flower-like ZnO nanostructure were synthesized by a microwave-assisted solution method. The obtained products were characterized by X-ray diffraction analysis, field-emission scanning electron microscopy, Fourier-transform infrared spectroscopy, Raman spectrophotometry, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy. The analytical results confirmed homogeneously distributed Ag nanoparticles supported on the surface of flower-like ZnO nanostructure. The photocatalytic effect of the heterostructure Ag/ZnO nanocomposites was investigated using photodegradation under ultraviolet (UV) light of methylene blue as model dye. The heterostructure Ag/ZnO nanocomposites exhibited much higher photocatalytic activity than pure ZnO flowers. The improved photocatalytic properties are attributed to formation of a Schottky barrier at the metal–semiconductor interface of the Ag/ZnO nanocomposites.  相似文献   

10.
We have designed photodetectors and UV field emitters based on a combination of ZnO nanowires/nanorods (ZNRs) and bilayer diamond films in a metal–semiconductor–metal (MSM) structure. The ZNRs were fabricated on different diamond films and systematic investigations showed an ultra‐high photoconductive response from ZNRs prepared on ultrananocrystalline diamond (UNCD) operating at a lower voltage of 2 V. We found that the ZNRs/UNCD photodetector (PD) has improved field emission properties and a reduced turn‐on field of 2.9 V μm?1 with the highest electron field emission (EFE) by simply illuminating the sample with ultraviolet (UV) light. The photoresponse (Iphoto/Idark) behavior of the ZNRs/UNCD PD exhibits a much higher photoresponse (912) than bare ZNRs (229), ZNRs/nanocrystalline diamond (NCD; 518), and ZNRs/microcrystalline diamond (MCD; 325) under illumination at λ=365 nm. A photodetector with UNCD films offers superior stability and a longer lifetime compared with carbon materials and bare ZNRs. The lifetime stability of the ZNRs/UNCD‐based device is about 410 min, which is markedly superior to devices that use bare ZNRs (92 min). The ZNRs/UNCD PD possesses excellent photoresponse properties with improved lifetime and stability; in addition, ZNRs/UNCD‐based UV emitters have great potential for applications such as cathodes in flat‐panel displays and microplasma display devices.  相似文献   

11.
Cl-doped ZnO nanodisks were grown on a Si(111) substrate using a thermal evaporation method. The prepared nanodisks exhibited a hexagonal shape with an average thickness of 50 nm and average diagonal of 270 nm. In addition, undoped ZnO disks with hexagonal shape were grown under the same conditions, but the sizes of these undoped ZnO disks were on the micrometer order. A possible mechanism was proposed for the growth of the Cl-doped ZnO nanodisks, and it was shown that the Cl1− anions play a crucial role in controlling the size. X-ray diffraction and Raman spectroscopy clearly showed an extension in the crystal lattice of ZnO because of the presence of chlorine. In addition, these nanodisks produced a strong photoluminescence emission peak in the ultraviolet (UV) region and a weak peak in the green region of the electromagnetic spectrum. Furthermore, the UV peak of the Cl-doped ZnO nanodisks was blueshifted with respect to that of the undoped ZnO disks.  相似文献   

12.
We have investigated the spectral response of back- and front-surface-illumination MgZnO/ZnO pn ultraviolet photodetector fabricated by plasma-assisted molecular beam epitaxy on sapphire substrate. The current–voltage measurements show that the device has a rectifying behavior with a turn-on voltage of 4.5 V. The detector exhibits a broad spectral response which covers the visible and UV spectra regions (from 275 to 375 nm) and has a maximum peak response at the wavelength of 330 nm. At a reverse bias of 5 V, the visible rejection (R330 nm/R500 nm) was more than two orders of magnitude. The peak responsivity at 330 nm for the device under back-illumination is about four times larger than that of the device under front-illumination under the same reverse bias. The response mechanisms of the device under back- and front-illumination are discussed.  相似文献   

13.
In this study, the synthesis of ZnO/SiO2 nanocomposites using bamboo leaf ash (BLA) and tested their photocatalytic activity for rhodamine B decolorization have been conducted. The nanocomposites were prepared by the sol–gel reaction of zinc acetate dihydrate, which was used as a zinc oxide precursor, with silica gel obtained from the caustic extraction of BLA. The effect of the Zn content (5, 10, and 20 wt%) on the physicochemical characteristics and photocatalytic activity of the nanocomposites was investigated. The results of X-ray diffraction, scanning electron microscopy, gas sorption, and transmission electron microscopy characterization confirmed the mesoporous structure of the composites containing nanoflower-like ZnO (wurtzite) nanoparticles of 10–30 nm in size dispersed on the silica support. Further, the nanocomposites were confirmed to be composed of ZnO/SiO2 by X-ray photoelectron spectroscopy analysis. Meanwhile, diffuse-reflectance UV–visible spectrophotometry analysis of the nanocomposites revealed band gap energies of 3.38–3.39 eV. Of the tested nanocomposites, that containing 10 wt% Zn exhibited the highest decolorization efficiency (99%) and fastest decolorization rate. In addition, the degradation efficiencies were not reduced significantly after five repeated runs, demonstrating the reusability of the nanocomposite catalysts. Therefore, the ZnO/SiO2 nanocomposite obtained from BLA is a promising reusable photocatalyst for the degradation of dye-polluted water.  相似文献   

14.
《中国化学会会志》2017,64(7):813-821
Zinc oxide nanoparticles (ZnO NPs ) were prepared by a simple, convenient, and cost‐effective wet chemical method using the biopolymer starch. The prepared ZnO NPs were characterized by X‐ray diffraction (XRD ), scanning electron microscopy (SEM ), energy‐dispersive X‐ray (EDX ), Fourier transform infrared (FT‐IR ), and UV ‐visible spectroscopic techniques. The average crystallite size calculated from XRD data using the Debye–Scherer equation was found to be 15 nm. The electrochemical behavior of caffeine (CAF ) was studied using a glassy carbon electrode (GCE ) modified with zinc oxide nanoparticles by cyclic voltammetry (CV ) and differential pulse voltammetry (DPV ). Compared to unmodified GCE , ZnO NPs‐ modified GCE (ZnO NPs MGCE ) exhibited excellent electrocatalytic activity towards CAF oxidation, which was evident from the increase in the peak current and decrease in the peak potential. Electrochemical impedance study suggested that the charge‐transfer capacity of GCE was significantly enhanced by ZnO NPs . The linear response of the peak current on the concentrations of CAF was in the range 2–100 μM . The detection limit was found to be 0.038 μM. The proposed sensor was successfully employed for the determination of CAF in commercial beverage samples.  相似文献   

15.
A microchip pressure-driven liquid chromatography (LC) with a packed column and an electrochemical flow cell has been developed by using polystyrene (PS) and poly(dimethylsiloxane) (PDMS). The cylindrical separation column with packed octadecyl silica particles was fabricated in the PS substrate. The three electrode system (working, reference, and counter electrode) for amperometric detection was fabricated onto the PS substrate, using the Au deposition, photolithography, and chemical etching. The detector flow cell was formed by sealing the electrode system with a PDMS chip containing a channel. In this flow cell, the effect of working electrode width (in the direction of flow) on chromatographic parameters, such as peak width and peak resolution were studied in electrode width ranging 50-5,000 microm. The effect of electrode width on sensitivity (current intensity, current density, and S/N ratio) was also examined. The sensitivity was discussed by simulating the concentration profile generated around the working electrode. The effects of the column packing size and the column size on the separation efficiency were examined. In this study, a good separation of three catechins was successfully achieved and the detection limits for (+)-catechin, epicatechin, and epigallocatechin gallate were 350, 450, and 160 nM, respectively.  相似文献   

16.
The fabrication of flexible electronics and systems, using rigid and brittle materials directly produced on stretchable substrate, leads to some issues and incompatibilities. These include rigidity for processing and modular flexibility for applications, macroscopic flexibility, and local rigidity to shield components from strain, compatibility with technological steps, and at the same time allowing patterning and machining. The development of smart substrate materials which meet such needs is therefore a promising route for flexible systems. Here, we demonstrate that by mixing polydimethylsiloxane (PDMS) and SU‐8 photoresist, we obtain both a photo‐hardenable and patternable stretchable hybrid material. A set of PDMS/SU‐8 and baking process combinations have been tested to determine an effective photo‐sensitive mixture. A standard photolithographic approach has been used on tensile test samples demonstrating a local hardening of millimeter‐sized ultraviolet exposed features and a local strain reduction reaching 35%. In addition, surface topography analysis and wet‐etching techniques have been used to demonstrate a light‐induced molding process and a selective etching of micrometer‐sized ultraviolet exposed patterns. The combined functional properties of the following material, its simplicity of implementation, and the well‐known assets of PDMS and SU‐8 make the PDMS/SU‐8 material very interesting and promising for various applications, especially stretchable systems. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1281–1291  相似文献   

17.
Lim KS  Chang WJ  Koo YM  Bashir R 《Lab on a chip》2006,6(4):578-580
We have developed a reliable fabrication method of forming micron scale metal patterns on poly(dimethylsiloxane) (PDMS) using a pattern transfer process. A metal stack layer consisting of Au-Ti-Au layers, providing a weak but reliable adhesion, was deposited on a silicon wafer. The metal stack layer was then transferred to a PDMS substrate using serial and selective etching. We demonstrate that features as small as 2 microm were reliably transferred on to the PDMS substrate for use as interconnects and electrodes for biosensors and flexible electronics application.  相似文献   

18.
Ultraviolet (UV) photodetector constructed by ZnO material has attracted intense research and commercial interest. However, its photoresistivity and photoresonse are still unsatisfied. Herein, we report a novel method to assemble ZnO nanoparticles (NPs) onto the reduced graphite oxide (RGO) sheet by simple hydrothermal process without any surfactant. It is found that the high-quality crystallized ZnO NPs with the average diameter of 5 nm are well dispersed on the RGO surface, and the density of ZnO NPs can be readily controlled by the concentration of the precursor. The photodetector fabricated with this ZnO NPs-RGO hybrid structure demonstrates an excellent photoresponse for the UV irradiation. The results make this hybrid especially suitable as a novel material for the design and fabrication of high performance UV photodector.  相似文献   

19.
报道了基于非刻蚀法的表面起皱机制来实现高分子薄膜表面的周期性梯度图案的简单可控制备.即对于处于机械拉伸状态的聚二甲基硅氧烷(PDMS)弹性基底,在其底部垫入"积木",而后对其进行紫外-臭氧(UVO)和氧等离子体(OP)的联合表面处理."积木"的加入引起了表面处理后表面硅氧层(SiOx)梯度厚度的形成,进而当释放拉伸应变后,诱导产生了梯度皱纹图案.结果表明:当UVO与OP联用处理时,不仅实现了较小拉伸应变下梯度皱纹形貌的制备,而且扩大了UVO单独使用时梯度皱纹周期的变化范围.通过OP与UVO的处理顺序和处理时间等因素的简单调节,进一步实现了不同梯度皱纹微结构的精细构筑.  相似文献   

20.
Automated methods of PDMS/β‐CD/divinylbenzene‐coated stir plate sorptive extraction (SPSE) coupled to HPLC‐fluorescence detector were reported for the first time. Three automation modes, static SPSE, circular flow SPSE and continuous flow SPSE, were evaluated and critically compared with stir bar sorptive extraction by using six polycyclic aromatic hydrocarbons as model analytes. It was found that the operable sample volume for circular flow SPSE and continuous flow SPSE was larger than that for static SPSE. Under the same extraction conditions, continuous flow SPSE exhibited the highest extraction efficiencies in all automated modes and manual stir bar sorptive extraction for the target compounds. Compared with the manual operation (approximately 5–10 min), automated SPSE required a relatively short time (117–180 s) to finish sampling, washing and sample loading. Besides being labor‐saving and time‐saving, automated SPSE has other advantages, such as no time limit and non‐attended operation. The proposed continuous flow PDMS/β‐CD/divinylbenzene‐coated SPSE‐HPLC‐fluorescence detector was successfully applied to environmental water analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号