首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Moon D  Song J  Kim BJ  Suh BJ  Lah MS 《Inorganic chemistry》2004,43(26):8230-8232
We report on helical coordination networks that were prepared using a hexanuclear manganese metallamacrocycle as a helical tecton. We were able to prepare the three-dimensional helical coordination networks using a hexanuclear manganese metallamacrocycle, [Mn(6)(lshz)(6)], as a helical tecton, where N-lauroyl salicylhydrazide (H(3)lshz) was used as the primary building unit to generate the helical tecton as a secondary building unit. While the 4(1)/4(3) screw symmetry-linked helical coordination network was obtained when the primary building units had an N-acetyl group, both the 3(1)/3(2) screw symmetry-linked and the 4(1)/4(3) screw symmetry-linked helical coordination networks were obtained simultaneously in the same batch when the primary building unit had a long alkyl N-lauroyl group at the N-acetyl site.  相似文献   

2.
Kondracka M  Englert U 《Inorganic chemistry》2008,47(22):10246-10257
A rational approach to the synthesis of silver-chromium mixed-metal coordination polymers is presented: 3-cyanoacetylacetone (HacacCN) features two potential binding sites. After deprotonation, it has been used as a chelating dionato ligand in the pseudo octahedral complex Cr(acacCN) 3; two polymorphs of this compound have been identified. In its protonated form, HacacCN was employed as a N donor toward Ag(I). Both functionalities may be exploited within the same solid: The chromium complex and silver salts of weakly coordinating anions have been successfully combined to mixed-metal coordination polymers. Cr(acacCN) 3 plays the role of a substitution-inert tecton with predictable bonding geometry which interacts with the conformationally soft silver cations via two or all three of its peripheric nitrile groups. From an equimolar amount of both constituents, six solids featuring a 1:1 ratio between Cr- and Ag-derived building blocks were obtained in good yield; their structures depend on the counteranions and the cocrystallized solvent and correspond either to 2D networks with (6,3) or augmented (4,4) topology or, in one case, adopt a 3D connectivity. In addition, three products with a Cr/Ag = 2:1 stoichiometry have been isolated: they adopt two-dimensional network structures.  相似文献   

3.
A strategy for the formation of heterometallic coordination polymers based on novel copper(II) and cobalt(III) heteroleptic complexes (acacCN)Cu(dpm) and (acacCN)Co(dpm)(2) (acacCN = 3-cyanoacetylacetonate; dpm = dipyrrin) is presented. Using dipyrrins appended with a p- or m-pyridyl group, dpm-4py and dpm-3py, four novel copper and cobalt complexes were prepared and characterized both in solution and in the solid state. These two classes of complexes show different electrochemical properties upon investigation by cyclic voltammetry in CH(2)Cl(2). While the copper complexes show only irreversible reduction processes, the voltammogram of the cobalt species reveals the presence of two quasi-reversible reductions. In the solid state, the copper(II) compounds self-assemble to form one-dimensional architectures upon coordination of the peripheral pyridyl group to the copper center, as characterized by single-crystal X-ray diffraction. Owing to the filled coordination sphere of the octahedral cobalt centers, the (acacCN)Co(dpm-py)(2) compounds crystallize as isolated molecules. Upon reaction with silver salts, these complexes form crystalline heterometallic architectures with different organization and dimensionality, depending on the nature of the metal center and the position of the nitrogen atom in the pyridyl group. The two copper complexes lead to the formation of trinuclear species, {[(acacCN)Cu(dpm-py)](2)Ag}(+), resulting from coordination of the pyridyl groups to the silver cations. However, while meta-functionalized complexes self-assemble into an extended architecture via weak interaction of the peripheral nitrile of the acacCN ligand to the Ag(+) cation, this interaction is not present in the para-functionalized analogue. In both networks based on the Ag(BF(4)) salt, coordination of the tetrafluoroborate anion to the silver center in the rather rare chelate mode is observed. Upon assembly of the cobalt metallatectons with silver salts, two-dimensional (2D) coordination polymers are obtained in crystalline form, resulting, however, from different sets of interactions. Indeed, no coordination of the peripheral nitrile of the acacCN ligand is observed in the network incorporating the m-pyridyl-appended dpm; coordination of the pyridyl groups to the silver center and d(10)-d(10) interactions lead to a 2D architecture. In the case of the para analogue, a 2D honeycomb network is observed owing to coordination of the Ag(I) ion to two pyridyl nitrogen atoms and to one peripheral nitrile group of a acacCN ligand. This latter polymer represents a geometrical hybrid of the networks reported in the literature based on homoleptic Co(dpm-4py)(3) and Cr(acacCN)(3) complexes.  相似文献   

4.
Using 4,4',4"-tricyanotriphenylmethanol 1 as a heterotetradentate tecton with C3v symmetry bearing three CN and one OH group, under self-assembly conditions a 3-D coordination network was obtained in the presence of Ag+ cations acting as a tetrahedral metallic tecton; due to the metrics of 1 (three long and one short distance between the central C atom and N and O coordination sites, respectively), the 3-D network is of pseudo-diamondoid type with different cavity sizes; although a two-fold homo-interpenetration is observed for the 3-D networks, the remaining space is occupied by CHCl3, MeOH solvent molecules and SbF6- anions.  相似文献   

5.
Zhang T  Kong J  Hu Y  Meng X  Yin H  Hu D  Ji C 《Inorganic chemistry》2008,47(8):3144-3149
Two silver(I) pyridyldiethynides, [Ag2(3,5-C2PyC2).4CF3CO2Ag.4H2O] ( A) and [Ag 2(3,5-C2PyC2).3AgNO3.H2O](B), were synthesized by reactions of 3,5-diethynylpyridine with silver trifluoroacetate and silver nitrate in high yield, respectively. X-ray crystallographic studies revealed that in A pyridyldiethynide groups connect Ag 11 cluster units to generate 1D supramolecular chains as bridging ligands, where each ethynide group interacts with four silver atoms. These supramolecular chains bearing pyridyl groups are linked by silver ions to form wavelike layers, which are further connected by trifluoroacetate ligands to afford a 3D coordination network. However, B exhibits a different structural feature, where two ethynide groups in one pyridyldiethynide ligand coordinate to three and four silver atoms, respectively. These silver ethynide cluster units are linked through silver-ethynide and argentophilic interactions, leading to a double silver chain by sharing silver atoms in these units. In B, the silver double chains are further connected by bridging pyridyldiethynide groups to generate 2D networks, which interact through the Ag-N coordination bonds between silver atoms and pyridyl groups in the adjacent layers to generate a 3D coordination network. In these two compounds, trifluoroacetate and nitrate groups exhibit different bonding modes, indicating that the counterion is an important factor influencing the structures of supramolecular chains and coordination networks.  相似文献   

6.
Using CoCl2 and a chiral tecton possessing C2 chirality and based on two coordination poles composed of a pyridine unit connected at the 4-position to a pyridine bearing at the 2 and 6 positions two optically active oxazoline moieties, a polar solid is obtained. The latter results from the acentric packing of directional 1-D coordination networks.  相似文献   

7.
The silver(I) coordination chemistry of 2,6-diarylpyrazines is reported. Discrete coordination complexes and two-dimensional coordination networks were characterized. The substitution pattern on the pendant aryl groups controlled the type of coordination chemistry involved. Thus, o-methyl-substituted aryl groups held the aryl groups orthogonal to the central pyrazine ring, opening the "hindered" nitrogen atoms to complexation, and polymeric networks were characterized. In the absence of the o-methyl groups, discrete coordination complexes were characterized. Thus, a dimeric 2:1 ligand-silver(I) complex was isolated and characterized on reaction of 2,6-bis(3',5'-dimethylphenyl)pyrazine with silver(I) trifluoroacetate in acetonitrile solvent, while a 2:2 complex was isolated from dichloromethane solvent. Two trifluoroacetate ligands bridge two silver cations in both complexes. Reaction of the same pyrazine ligand with silver(I) tetrafluoroborate yielded a discrete 2:1 complex. A 2:1 complex was isolated on reaction of 2,6-diphenylpyrazine with silver(I) nitrate. These complexes were interlinked by weakly coordinating nitrate anions to form interwoven one-dimensional ribbons. Two-dimensional networks were obtained on reaction of silver(I) trifluoroacetate with either 2,6-bis(2',6'-dimethylphenyl)pyrazine or 2-(2',6'-dimethylphenyl)-6-(3',5'-dimethylphenyl)pyrazine. The networks comprised pyrazine-silver(I) strands cross-linked with complex bridged silver(I) trifluoroacetates.  相似文献   

8.
Zhao Y  Zhang P  Li B  Meng X  Zhang T 《Inorganic chemistry》2011,50(18):9097-9105
Three phenylethynes bearing methyl carboxylate (HL1), monocarboxylate (H(2)L2), and dicarboxylate (H(2)L3) groups were utilized as ligands to synthesize a new class of organometallic silver(I)-ethynide complexes as bifunctional building units to assemble silver(I)-organic networks. X-ray crystallographic studies revealed that in [Ag(2)(L1)(2)·AgNO(3)](∞) (1) (L1= 4-C(2)C(6)H(4)CO(2)CH(3)), one ethynide group interacts with three silver ions to form a complex unit. These units aggregate by sharing silver ions with the other three units to afford a silver column, which are further linked through argentophilic interaction to generate a two-demensional (2D) silver(I) network. In [Ag(2)(L2)·3AgNO(3)·H(2)O](∞) (2) (L2 = 4-CO(2)C(6)H(4)C(2)), the ethynide group coordinates to four silver ions to form a building unit (Ag(4)C(2)C(6)H(4)CO(2)), which interacts through silver(I)-carboxylate coordination bonds to generate a wave-like 2D network and is subsequently connected by nitrate anions as bridging ligands to afford a three-demensional (3D) network. In [Ag(3)(L3)·AgNO(3)](∞) (3) (L3 = 3,5-(CO(2))(2)C(6)H(3)C(2)), the building unit (Ag(4)C(2)C(6)H(3)(CO(2))(2)) aggregates to form a dimer [Ag(8)(L3)(2)] through argentophilic interaction. The dimeric units interact through silver(I)-carboxylate coordination bonds to directly generate a 3D network. The obtained results showed that as a building unit, silver(I)-ethynide complexes bearing carboxylate groups exhibit diverse binding modes, and an increase in the number of carboxylate groups in the silver(I)-ethynide complex unit leads to higher level architectures. In the solid state, all of the complexes (1, 2, and 3) are photoluminescent at room temperature.  相似文献   

9.
A dicationic tecton bearing four NH and two OH groups, as primary and secondary hydrogen bond donor sites, respectively, leads, in the presence of [M(CN)(4)](2-) anions, to the formation of polymorphic 2- and 3-D hydrogen-bonded networks.  相似文献   

10.
Single‐crystal X‐ray diffraction of a series of ten crystalline silver(I)–trifluoroacetate complexes that contained designed ligands, each of which was composed of an aromatic system that was functionalized with terminal and internal ethynyl groups and a vinyl substituent, provided detailed information on the influence of ligand disposition and orientation, coordination preferences, and the co‐existence of different types of silver(I)–carbon bonding interactions (silver–ethynide, silver–ethynyl, silver–ethenyl, and silver–aromatic) on the construction of coordination networks that were consolidated by argentophilic and weak inter/intramolecular interactions. The complex Ag L10? 6 AgCF3CO2 ? H2O ? MeOH ( HL10 =1‐{[4‐(prop‐2‐ynyloxy)‐3‐vinylphenyl]ethynyl}naphthalene) is the first reported example that exhibits all four kinds of silver(I)–carbon bonding interactions in the solid state.  相似文献   

11.
Stanna-closo-dodecaborate [SnB11H11]2- reacts as a nucleophile with various silver electrophiles ([Ag(PMe3)]+, [Ag(PEt3)]+, [Ag(PPh3)]+, and Ag+) to form silver-tin bonds. Aggregation of two, three, or four units of [{Ag(SnB11H11)(PR3)}n]n- (PPh3, n = 2; PEt3, n = 3; PMe3, n = 4) was found, depending on the size of the coordinating phosphine. The structures of the silver-tin clusters in the solid state were determined by single-crystal X-ray diffraction. In these phosphine silver coordination compounds, the tin ligand exhibits micro2- and micro3-coordination with the silver atoms. From the reaction with silver nitrate, an octaanionic stanna-closo-dodecaborate coordination compound, [Et4N]8[Ag4(SnB11H11)6], was isolated. In this cluster, arranged as butterfly, the stannaborate shows various coordination modes at four silver atoms. In the reported silver-tin complexes, the silver-silver interatomic distances are in a range of 2.6326(10)-3.1424(6) A. Silver-tin distances were found between 2.6416(5) and 3.1460(6) A. Analysis of the molecular orbitals calculated by means of density functional theory shows that the LUMO of the core compound without [SnB11H11]2- units is always a totally symmetric combination of (mainly) s-orbitals of Ag atoms. This core is filled with electrons of the HOMOs of the [SnB11H11]2- units and is leading, in this way, to a stable compound.  相似文献   

12.
Herein, we show that cyclotriphosphazenes carrying organo amino side chains, (RNH)6P3N3 [R = n-propyl (1), cyclohexyl (2), benzyl (3)], and (C4H8N)6P3N3 (4) produce supramolecular coordination compounds in conjunction with silver salts by formation of linear N-Ag-N connections via nitrogen centers of the phosphazene ring. Crystalline materials were obtained by layering methanol solutions containing phosphazene ligands with methanol solutions of AgClO4 and AgNO3. The donor ability of the anion and the steric demand of the lipophilic ligand sphere R control the topology of the coordination network: (1)2(AgClO4)3 forms a graphite-type (6,3) network. All three N(ring) atoms of the phosphazene ligand coordinate to silver ions, which, in return, linearly bridge two phosphazene ligands. The phosphazene-Ag(I) arrangement in 1(AgNO3)2 exists of zigzag chains featuring one bridging silver ion and one terminally coordinated silver ion per ligand molecule. The terminally located Ag(I) ions of neighboring chains are bridged by nitrate ions, resulting in a 2D network. Both 2(AgClO4) and 4(AgClO4) contain only one bridging silver ion per phosphazene ligand, which leaves one N(ring) site vacant and gives 1D zigzag chain arrangements. The crystal structures of 3(AgClO4)2 and 3(AgNO3)2 resemble that of 1(AgNO3)2, but show additional Ag-pi(aryl) interactions between the terminally arranged silver ions and benzyl groups. Treatment of 3 with a methanol solution containing both AgNO3 and AgClO4 leads to the heteroanion derivative 3(AgNO3)(AgClO4). Phosphazene ligands 1-3 have the ability to undergo hydrogen bonding to anions via the six NH groups, and the coordination polymers containing these ligands feature dense networks of NH...O bonds.  相似文献   

13.
The silver(I) coordination networks [Ag2(mu-O2CCF3)2(mu-NN)2](infinity) exist as a polymer of macrocycles or a double-stranded polymer when NN = 1,2-C6H4[NHC(O)-4-C5H4N]2 or 1,2-C6H4[NHC(O)-3-C5H4N]2, respectively. Crystal engineering of the polymers is achieved through interchain hydrogen bonds.  相似文献   

14.
Structural correlation in a series of eight silver(I) complexes bearing substituted phenylethynide ligands was systematically investigated through variation of the position or steric bulk of substituents on the aromatic ring. All coordination frameworks are constructed with the supramolecular synthon Ar--C triple bond C superset Ag(n) (Ar=4-MeC6H4, 3-MeC6H4, 2-MeC6H4, 4-tBuC6H4, 3,5-(CF3)2C6H3; n=4, 5), and the presence of coexisting ligands was found to influence the supramolecular assembly. The role of pi-pi stacking, C--Hpi and Ag-C(aromatic) interactions in stabilizing the coordination networks is also discussed.  相似文献   

15.
The reactions of four flexible tetradentate ligands, 1,3-bis(2-pyridylthio)propane (L1), 1,4-bis(2-pyridylthio)butane (L2), 1,5-bis(2-pyridylthio)pentane (L3) and 1,6-bis(2-pyridylthio)hexane (L4) with AgX (X = BF4-, ClO4-, PF6-, or CF3SO3-) lead to the formation of seven new complexes: [AgL1(BF4)]2 (1), [[AgL2](ClO4)]infinity (2), [[AgL2(CH3CN)](PF6)]infinity (3), [[AgL3](BF4)(CHCl3)]2 (4), [[AgL3(CF3SO3)](CH3OH)(0.5)]infinity (5), [[Ag2L4(2)](BF4)2]infinity (6), and [[AgL4](PF6)]infinity (7), which have been characterized by elemental analyses, IR spectroscopy, and X-ray crystallography. Single-crystal X-ray analyses show that complexes 1 and 4 possess dinuclear macrometallacyclic structures, and complexes 2, 3 and 5-7 take chain structures. In all the complexes, the nitrogen atoms of ligands preferentially coordinate to silver atoms to form normal coordination bonds, while the sulfur atoms only show weak interactions with silver atoms and the intermolecular AgS weak contacts connect the low-dimensional complexes into high-dimensional supramolecular networks. Additional weak interactions, such as pi-pi stacking, F...F weak interactions, Ag...O contacts or C-H...O hydrogen bonds, also help to stabilize the crystal structures. It was found that the parity of the -(CH2)n- spacers (n = 3-6) affect the orientation of the two terminal pyridyl rings, thereby significantly influence the framework formations of these complexes. The coordination features of ligands and their conformation changes between free and coordination states have been investigated by DFT calculations.  相似文献   

16.
The new ligand Ph(2)(O)POCH(2)C(pz)(3) (pz = pyrazolyl ring), prepared from the reaction of HOCH(2)C(pz)(3) and Ph(2)P(O)Cl in the presence of base, reacts with either AgBF(4) or Fe(BF(4))(2).6H(2)O in a 2/1 molar ratio to yield {[Ph(2)(O)POCH(2)C(pz)(3)](2)Ag}(BF(4)) () and {[Ph(2)(O)POCH(2)C(pz)(3)](2)Fe}(BF(4))(2) (), respectively. In the structure of , the silver is in an unusual planar geometry with each of the ligands in a kappa(2)-kappa(0) coordination mode. Slow evaporation of a thf solution of yields crystalline [Ph(2)(O)POCH(2)C(pz)(3)Ag](2)(thf)(2)}(BF(4))(2) (). In each cationic unit of , the two Ph(2)(O)POCH(2)C(pz)(3) ligands coordinate to the same two silver(i) centers in a kappa(2)-kappa(1) bonding mode, with a silver atom separation of 3.36 A. The supramolecular structure of both and is dominated by a pair of cooperative hydrogen bonding interactions between the Ph(2)P(O) secondary tecton and a hydrogen atom from a methylene group situated on a neighboring building block, which arranges the cations in chains. The reaction of HC(pz)(3) and AgO(3)SCF(3) (AgOTf) yields {[HC(pz)(3)](2)Ag(2)}(OTf)(2) (). The cationic unit in has a structure very similar to that of , but with a much shorter distance between the silver atoms at 2.86 A. The supramolecular structure of is dominated by an unusual pyrazolyl embrace interaction where the acceptor ring in the C-Hpi interaction is the pyrazolyl ring kappa(1)-bonded to silver in the adjacent dimeric unit rather than the other ring in a kappa(2)-bonded Cpz(2) unit. This interaction arranges the cations in chains which are further organized into sheets by the triflate anions that link the chains via combined AgO/CHO interactions. The iron in is octahedral with each tris(pyrazolyl)methane unit in the kappa(3)-tripodal coordination mode. The supramolecular structure is sheets formed by hydrogen bonding between the Ph(2)P(O) oxygen and a meta-position hydrogen on one of the diphenylphosphine rings from an adjacent cation.  相似文献   

17.
The synthesis and characterization of nine coordination networks based on 1,3-bis(phenylthio)propane, L(3), and silver(I) salts of PF(6)(-) (1), CF(3)COO(-) (2), CF(3)CF(2)COO(-) (3), CF(3)CF(2)CF(2)COO(-) (4), p-TsO(-) (5, 6), and CF(3)SO(3)(-) (7-9) are reported. Only 1 and other "isostructural" complexes with weakly coordinating anions such as ClO(4)(-) and SbF(6)(-) are of the host-guest type. In all the other complexes, the anions and the acetone molecules, when present, are coordinated to the metal. Most of the complexes studied here form a 2D-coordination network. Only 4 and 5 adopt a polymer-like chain structure. The packing of the chains of 4 is pseudohexagonal compact, while that of 5 is of the centered type. In complex 1, the silver atom is tetrahedrally coordinated to the sulfur atoms of four different ligands. The PF(6)(-) anions and acetone molecules, sandwiched between silver-ligand cationic sheets, are held through van der Waals interactions. In each of the three perfluorocarboxylates (2-4), two silver atoms are joined by the anions in a diatomic bridging mode. The Ag...Ag distances are sufficiently short to indicate weak metal...metal interactions. The dimeric units in 2 and 3 are interconnected through the ligands, thereby generating a 2D-network of neutral sheets, while, in 4, the dimeric units are bound to four ligands and a 1D-coordination polymer is generated. In the case of the sulfonate anions (p-TsO(-) and CF(3)SO(3)(-)), the crystallization solvent influences the structure adopted. Thus, in 5, 7, and 9 obtained from petroleum ether, or other nonpolar solvents, two silver atoms are bound in a double-bridge fashion, while a monobridge mode is noted for 6 and 8, both recrystallized from diethyl ether. In 8, both bridging types are observed. The thermogravimetric investigation, in the room temperature-450 degrees C interval, of complexes 1, 3, and 7, which incorporate acetone molecules in their crystal structures, reveals a two-step weight loss for 1 (the acetone molecules are lost first followed by the ligands, leaving behind the silver salt), while complexes 3 and 7 decompose in a single step to metallic silver.  相似文献   

18.
The self-assembly of coordination networks from reaction of 2,4,6-trimesityl-1,3,5-triazine and silver(I) trifluoroacetate is described. A one-dimensional linear polymer is formed from solutions deficient in silver while a two-dimensional, graphite-like sheet is formed from solutions containing 3 equiv of silver per triazine. The structurally similar networks both contain triazine rings separated by two trifluoroacetate-bridged silver atoms. The two silver atoms are effectively sandwiched between two mesityl rings with intermediate arene-silver interactions. The silver-silver bond lengths are 2.9731(4) and 2.9246(5) A in the one-dimensional network and 2.8842(4) A in the two-dimensional network.  相似文献   

19.
The construction of two types of coordination polymers with closely related 4-connected topologies [PtS and lvt (4(2).8(4))] were achieved based on a well-designed bent dipyrazine linker, and the topological differences only result from the stereochemistry of silver(I) coordination sphere with the same coordination donors. Selective anion-exchange functions of the series of PtS-type coordination networks containing different counter anions (from small BF4- to very large SbF6-) were identified.  相似文献   

20.
The Al(III) complex of 3-cyanopentane-2,4-dionate (acacCN) features peripheric nitrile groups which may coordinate to silver cations. As the Al(acacCN)(3) building block ranges between inertness and lability, its reactivity towards Ag(I) salts depends on the solvent and the weakly or non-coordinating counter anions; an impressive range of different extended structures has been encountered. With AgPF(6), the original building block is retained and hexafluorophosphate remains uncoordinated. A highly symmetric 3D crystalline solid forms in the presence of trichloromethane, and with benzene a tetrasolvate with large solvent-filled voids is obtained. Two different classes of reaction products with silver triflate have been observed. In addition to networks incorporating Al(acacCN)(3), partial solvolysis may lead to a dinuclear methoxide-bridged derivative. The resulting Al(2)(μ-OMe)(2) core may be perceived as a four-connected node in a self-interpenetrating 3D network. Earlier studies reported transmetalation for the reaction of Al(acacCN)(3) with AgNO(3) and we find the same reactivity for silver tetrafluoroborate. Full degradation of the Al(III) building block with formation of [Ag(acacCN)] is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号