首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 668 毫秒
1.
Zhang T  Kong J  Hu Y  Meng X  Yin H  Hu D  Ji C 《Inorganic chemistry》2008,47(8):3144-3149
Two silver(I) pyridyldiethynides, [Ag2(3,5-C2PyC2).4CF3CO2Ag.4H2O] ( A) and [Ag 2(3,5-C2PyC2).3AgNO3.H2O](B), were synthesized by reactions of 3,5-diethynylpyridine with silver trifluoroacetate and silver nitrate in high yield, respectively. X-ray crystallographic studies revealed that in A pyridyldiethynide groups connect Ag 11 cluster units to generate 1D supramolecular chains as bridging ligands, where each ethynide group interacts with four silver atoms. These supramolecular chains bearing pyridyl groups are linked by silver ions to form wavelike layers, which are further connected by trifluoroacetate ligands to afford a 3D coordination network. However, B exhibits a different structural feature, where two ethynide groups in one pyridyldiethynide ligand coordinate to three and four silver atoms, respectively. These silver ethynide cluster units are linked through silver-ethynide and argentophilic interactions, leading to a double silver chain by sharing silver atoms in these units. In B, the silver double chains are further connected by bridging pyridyldiethynide groups to generate 2D networks, which interact through the Ag-N coordination bonds between silver atoms and pyridyl groups in the adjacent layers to generate a 3D coordination network. In these two compounds, trifluoroacetate and nitrate groups exhibit different bonding modes, indicating that the counterion is an important factor influencing the structures of supramolecular chains and coordination networks.  相似文献   

2.
YP Xie  TC Mak 《Inorganic chemistry》2012,51(16):8640-8642
Variation of the reaction conditions with AgC≡CR (R = Ph, C(6)H(4)OCH(3)-4, (t)Bu), (t)BuPO(3)H(2), and AgX (X = NO(3), BF(4)) as starting materials afforded four new silver(I) ethynide complexes incorporating the tert-butylphosphonate ligand, namely, 3AgC≡CPh·Ag(2)(t)BuPO(3)·Ag(t)BuPO(3)H·2AgNO(3) (1), 2AgC≡CC(6)H(4)OCH(3)-4·Ag(2)(t)BuPO(3)·2AgNO(3) (2), [{Ag(5)(NO(3)@Ag(18))Ag(5)}((t)BuC≡C)(16)((t)BuPO(3))(4)(H(2)O)(3)][{Ag(5)(NO(3)@Ag(18))Ag(5)} ((t)BuC≡C)(16)((t)BuPO(3))(4)(H(2)O)(4)]·3SiF(6)·4.5H(2)O·3.5MeOH (3), and [{Ag(8)(Cl@Ag(14))}((t)BuC≡C)(14)((t)BuPO(3))(2)F(2)(H(2)O)(2)]BF(4)·3.5H(2)O (4). Single-crystal X-ray analysis revealed that complexes 1 and 2 display different layer-type coordination networks, while 3 and 4 contain high-nuclearity silver(I) composite clusters enclosing nitrate and chloride template ions, respectively, that are supported by (t)BuPO(3)(2-) ligands.  相似文献   

3.
Fang XQ  Deng ZP  Huo LH  Wan W  Zhu ZB  Zhao H  Gao S 《Inorganic chemistry》2011,50(24):12562-12574
Self-assembly of silver(I) salts and three ortho-hydroxyl and carboxyl groups decorated arenesulfonic acids affords the formation of nine silver(I)-sulfonates, (NH(4))·[Ag(HL1)(NH(3))(H(2)O)] (1), {(NH(4))·[Ag(3)(HL1)(2)(NH(3))(H(2)O)]}(n) (2), [Ag(2)(HL1)(H(2)O)(2)](n) (3), [Ag(2)(HL2)(NH(3))(2)]·H(2)O (4), [Ag(H(2)L2)(H(2)O)](n) (5), [Ag(2)(HL2)](n) (6), [Ag(3)(L3)(NH(3))(3)](n) (7), [Ag(2)(HL3)](n) (8), and [Ag(6)(L3)(2)(H(2)O)(3)](n) (9) (H(3)L1 = 2-hydroxyl-3-carboxyl-5-bromobenzenesulfonic acid, H(3)L2 = 2-hydroxyl-4-carboxylbenzenesulfonic acid, H(3)L3 = 2-hydroxyl-5-carboxylbenzenesulfonic acid), which are characterized by elemental analysis, IR, TGA, PL, and single-crystal X-ray diffraction. Complex 1 is 3-D supramolecular network extended by [Ag(HL1)(NH(3))(H(2)O)](-) anions and NH(4)(+) cations. Complex 2 exhibits 3-D host-guest framework which encapsulates ammonium cations as guests. Complex 3 presents 2-D layer structure constructed from 1-D tape of sulfonate-bridged Ag1 dimers linked by [(Ag2)(2)(COO)(2)] binuclear units. Complex 4 exhibits 3-D hydrogen-bonding host-guest network which encapsulates water molecules as guests. Complex 5 shows 3-D hybrid framework constructed from organic linker bridged 1-D Ag-O-S chains while complex 6 is 3-D pillared layered framework with the inorganic substructure constructing from the Ag2 polyhedral chains interlinked by Ag1 dimers and sulfonate tetrahedra. The hybrid 3-D framework of complex 7 is formed by L3(-) trianions bridging short trisilver(I) sticks and silver(I) chains. Complex 8 also presents 3-D pillared layered framework, and the inorganic layer substructure is formed by the sulfonate tetrahedrons bridging [(Ag1O(4))(2)(Ag2O(5))(2)](∞) motifs. Complex 9 represents the first silver-based metal-polyhedral framework containing four kinds of coordination spheres with low coordination numbers. The structural diversities and evolutions can be attributed to the synthetic methods, different ligands and coordination modes of the three functional groups, that is, sulfonate, hydroxyl and carboxyl groups. The luminescent properties of the nine complexes have also been investigated at room temperature, especially, complex 1 presents excellent blue luminescence and can sensitize Tb(III) ion to exhibit characteristic green emission.  相似文献   

4.
Zhao XL  Wang QM  Mak TC 《Inorganic chemistry》2003,42(24):7872-7876
Four new silver(I) double salts (L(2)H)(4)[Ag(10)(C(2))(CF(3)CO(2))(12)(L)(2)].5H(2)O (1), [Ag(8)(C(2))(CF(3)CO(2))(6)(L)(6)] (2), [(Ag(2)C(2))(AgC(2)F(5)CO(2))(6)(L)(3)(H(2)O)].H(2)O (3), and (L.H(3)O)(2)[Ag(11)(C(2))(2)(C(2)F(5)CO(2))(9)(H(2)O)(2)].H(2)O (4) incorporating the hitherto unexplored ligand 4-hydroxyquinoline (L) have been synthesized by the hydrothermal method. Compound 1 features an unprecedented bicapped square-antiprismatic Ag(10) silver cage with an embedded C(2)(2-) moiety, whereas the discrete supermolecule 2 bears a rhombohedral Ag(8) core similar to that previously found in Ag(2)C(2).6AgNO(3). Compound 3 contains a discrete supramolecular complex whose core is a (C(2))(2)@Ag(16) double cage constructed from the edge-sharing of two monocapped square antiprisms, which is completely surrounded by 12 pentafluoropropionate, 6 4-hydroxyquinoline, and 2 aqua ligands. The layer structure in 4 is constructed from a sinuous anionic silver column composed of fused irregular monocapped trigonal antiprisms each encapsulating a C(2)(2-) dianion, with L.H(3)O(+) species serving as hydrogen-bond connectors to adjacent columns.  相似文献   

5.
Ten polymeric silver(I) double salts containing embedded acetylenediide: [(Ag2C2)2(AgCF3CO2)9(L1)3] (1), [(Ag2C2)2(AgCF3CO2)10(L2)3]H2O (2), [(Ag2C2)(AgCF3CO2)4(L3)(H2O)]0.75 H2O (3), [(Ag2C2)(1.5)(AgCF3CO2)7(L4)2] (4), [(Ag2C2)(AgCF3CO2)7(L5)2(H2O)] (5), [(Ag2C2) (AgC2F5CO2)7(L1)3(H2O)] (6), [(Ag2C2)(AgCF3CO2)7(L1)3(H2O)]2 H2O (7), [(Ag2C2)(AgC2F5CO2)6(L3)2] (8), [(Ag2C2)2(AgC2F5CO2)12(L4)2(H2O)4]H2O (9), and [(Ag2C2)(AgCF3CO2)6(L3)2(H2O)]H2O (10) have been isolated by varying the types of betaines, the perfluorocarboxylate ligands employed, and the reaction conditions. Single-crystal X-ray analysis has shown that 1-4 all have a columnar structure composed of fused silver(I) double cages, with C2(2-) species embedded in its stem and an exterior coat comprising anionic and zwitterionic carboxylates. For 5 and 6, single silver(I) cages are linked into a beaded chain through both types of carboxylate ligands. In 7, two different coordination modes of L1 connect the silver(I) polyhedra into a chain. For 8, the mu(2)-O,O' coordination mode of L3 connects the silver(I) double cages into a chain. Compound 9 exhibits a two-dimensional architecture generated from the cross-linkage of double cages by C2F5CO2-, L4, and [Ag2(C2F5CO2)2] units. Similar to 9, 10 is also a two-dimensional structure, which is formed by connecting the chains of linked double cages through [Ag2(CF3CO2)2] bridging.  相似文献   

6.
A series of Ag(I) coordination compounds, from one-dimensional chains to 3D porous frameworks, were achieved from N,N'-bis[1-(2-pyrazinyl)ethylidene]benzil dihydrazone, L, via self-assembly, using helicates as effective secondary building units. Compound 2 [(Ag(2.75)L)(NO(3))(2.75)] was comprised of two opposite-handed 3D frameworks formed by connecting the 4(1) helical chains into (10(3)-b) nets. The pairs of the racemic 3D frameworks were connected through additional silver(I) centers and entangled each other forming a racemic 3D net. Compound 3 [(Ag(13)L(8))(BF(4))(13)(H(2)O)(12)] was comprised of a 3D framework that was constructed from double-helical building intermediates Ag(2)L(2) with one-dimensional infinite chains being threaded into the large voids of a 3D framework to form a weave structure. The ladder-like chains in compound 4 [(Ag(3)L(2))(ClO(3))(3)(CH(3)OH)(2)(CH(3)CN)] were formed by the addition of excess NaClO(3) into the methanol solution containing AgNO(3) and the ligand L, and the zigzag chains in compound 5 [(Ag(2)L(2))(ClO(4))(2)(CH(3)CN)(2)] were constructed by the addition of excess NaClO(4) into an acetonitrile solution containing AgNO(3) and the ligand L.  相似文献   

7.
Wang QM  Mak TC 《Inorganic chemistry》2003,42(5):1637-1643
The first successful attempt to construct supramolecular entities via incorporation of bifunctional exodentate ligands into the silver acetylide system is reported. Coordination assembly with nitrogen-donor spacers led to the formation of five distinct supramolecular complexes, namely [(Ag(2)C(2))(AgCF(3)CO(2))(4)(pyz)(2)](n) (1), [(Ag(2)C(2))(2)(AgCF(3)CO(2))(10)(CF(3)CO(2))(4)(DabcoH)(4)(H(2)O)(1.5)].H(2)O (2), [(Ag(2)C(2))(AgCF(3)CO(2))(4)(CF(3)CO(2))(bpaH)](n)() (3), [(Ag(2)C(2))(AgCF(3)CO(2))(8)(bpa)(4)](n) (4), and [(Ag(2)C(2))(2)(AgCF(3)CO(2))(10)(bppz)(2)(H(2)O)](n) (5) (pyz = pyrazine; Dabco = 1,4-diazabicyclo[2.2.2]octane; bpa = 1,2-bis(4-pyridyl)ethane; bppz = 2,3-bis(2-pyridyl)pyrazine). Complex 1 is a three-dimensional framework composed of silver columns cross-linked by pyrazine bridges, whereas 2 contains a discrete supermolecule whose core is a Ag(14) double cage that is completely surrounded by trifluoroacetate, aqua, and terminal monoprotonated Dabco ligands. Complex 3 has a branched-tree architecture with one terminal of the bpa ligand attached to the silver backbone and the other exposed and protonated. In 4, neutral decanuclear [(Ag(2)C(2))(AgCF(3)CO(2))(8)] units are interlinked by bpa spacers adopting both gauche and anti conformations to generate a layer structure. Another two-dimensional network was formed with bppz serving as an angular bridging ligand in 5, in which the building unit is a silver quadruple cage containing 24 silver atoms.  相似文献   

8.
A series of new silver(I)-containing MOFs [Ag(2)(tr(2)ad)(2)](ClO(4))(2) (1), [Ag(2)(VO(2)F(2))(2)(tr(2)ad)(2)]·H(2)O (2), [Ag(2)(VO(2)F(2))(2)(tr(2)eth)(2)(H(2)O)(2)] (3), and [Ag(2)(VO(2)F(2))(2)(tr(2)cy)(2)]·4H(2)O (4) supported by 4-substituted bifunctional 1,2,4-triazole ligands (tr(2)ad = 1,3-bis(1,2,4-triazol-4-yl)adamantane, tr(2)eth = 1,2-bis(1,2,4-triazol-4-yl)ethane, tr(2)cy = trans-1,4-bis(1,2,4-triazol-4-yl)cyclohexane) were hydrothermally synthesized and structurally characterized. In these complexes, the triazole heterocycle as an N(1),N(2)-bridge links either two adjacent Ag-Ag or Ag-V centers at short distances forming polynuclear clusters. The crystal structure of compound 1 is based on cationic {Ag(2)(tr)(4)}(2+) fragments connected in a 2D rhombohedral grid network with (4,4) topology. The neighboring layers are tightly packed into a 3D array by means of argentophilic interactions (Ag···Ag 3.28 ?). Bridging between different metal atoms through the triazole groups assists formation of heterobimetallic Ag(I)/V(V) secondary building blocks in a linear V-Ag-Ag-V sequence that is observed in complexes 2-4. These unprecedented tetranuclear {Ag(2)(VO(2)F(2))(2)(tr)(4)} units (the intermetal Ag-Ag and Ag-V distances are 4.24-4.36 and 3.74-3.81 ?, respectively), in which vanadium(V) oxofluoride units possess distorted trigonal bipyramidal environment {VO(2)F(2)N}ˉ, are incorporated into 1D ribbon (2) or 2D square nets (3, 4) using bitopic μ(4)-triazole ligands. The valence bond calculation for vanadium atoms shows +V oxidation state in the corresponding compounds. Thermal stability and photoluminescence properties were studied for all reported coordination polymers.  相似文献   

9.
Ferrocene-based ligands 1,1'-di(pyrazinyl)ferrocene (L1) and 1,1'-di(2-pyrimidinyl)ferrocene (L2) were synthesized and copper and silver complexes were obtained from L1. Coordination polymers [{Cu(2)(PhCOO)(4)}(L1)](n) (1), [{Cu(2)(C(5)H(11)COO)(4)}(L1)](n) (2), and [{Cu(2)(OAc)(4)}(L1)](n).0.5n[Cu(2)(OAc)(4)(H(2)O)(2)].1.5nCH(3)CN (3) resulted from the reaction with the corresponding copper carboxylates. In all three complexes, L1 links the dinuclear copper carboxylate units to form one-dimensional step-like chains. In 2, these chains are further linked by [Cu(2)(OAc)(4)(H(2)O)(2)] dinuclear units via hydrogen bonding to form sheet structures. The reaction of L1 with copper(I) iodide resulted in a multinuclear complex [(CuI)(4)(L1)(2)].(L1) (4), which contains a [(CuI)(4)(L1)(2)] diferrocene unit with a step-like (CuI)(4) core. Reactions of L1 with silver(I) salts resulted in silver-bridged diferrocenes [Ag(2)(L1)(2)]X(2) (X = ClO(4) (5a, b), NO(3) (6a-c) and PF(6) (7)), some of which incorporate aromatic solvents into their crystal lattices. The intramolecular Ag...Ag separations in these metallamacrocycles (3.211-3.430 A) depended upon the counter-anions and on the coordination mode of the silver ions. In all of these coordination complexes, L1adopts a synperiplanar eclipsed conformation and acts as a bidentate ligand, with only the 5-nitrogen of each pyrazine ring involved in coordination.  相似文献   

10.
Gold(I) and silver(I) complexes of 1-methyl-5-thio-tetrazole (1) have been prepared and the coordination chemistry of this ligand toward metal-phosphine frameworks has been explored. As indicated by IR and Raman data, ligand 1 is deprotonated and the resulted anion acts as a bidentate (S,N)-tetrazole-5-thiolato unit in the new gold(I) complexes, [Au(SCN(4)Me)(PPh(3))] (2), [{Au(SCN(4)Me)}(2)(μ-dppm)] (3), and [{Au(SCN(4)Me)}(2)(μ-dppe)] (4), while it is coordinated only through the sulfur atom as its neutral tetrazole-5-thione form in the silver(I) derivative, [Ag(HSCN(4)Me)(PPh(3))](2)(OTf)(2) (5). Further characterization of the new compounds was performed using multinuclear ((1)H, (13)C, (31)P, (19)F) NMR spectroscopy, mass spectrometry, and DSC measurements. Single-crystal X-ray diffraction studies revealed basically linear P-M-S arrangements in complexes 3-5. The bidentate (S,N) coordination pattern results in a T-shaped (S,N)PAu core in 3 and 4, whereas, in 5, a similar coordination geometry is achieved in the dimer association based on S-bridging ligand 1. Herein, weak (C)H···Au and (C)H···Ag agostic interactions were observed. An intramolecular Au···Au contact occurs in 3, while in 4 intermolecular aurophilic bonds lead to formation of a chain polymer. An intermolecular Ag···Ag contact is also present in the dimer unit of 5. Low-temperature (31)P NMR data for 5 evidenced the presence of monomer and dimer units in solution. Theoretical calculations on model of the complexes 2 and 4 are consistent with the geometries found by X-ray diffraction studies.  相似文献   

11.
The multinuclear metal-ligand supramolecular synthon R-C≡C?Ag(n) (R = alkyl, cycloalkyl; n = 3, 4, 5) has been employed to construct two high-nuclearity silver ethynide cluster compounds, [Cl(6)Ag(8)@Ag(30)((t)BuC≡C)(20)(ClO(4))(12)]·Et(2)O (1) and [Cl(6)Ag(8)@Ag(30)(chxC≡C)(20)(ClO(4))(10)](ClO(4))(2)·1.5Et(2)O (chx = cyclohexyl) (2), that bear the same novel Cl(6)Ag(8) central core. The synthesis of 1 made use of [Cl@Ag(14)((t)BuC≡C)(12)]OH as a precursor, and its reaction with AgClO(4) in CH(2)Cl(2) resulted in an increase in nuclearity from 14 to 38. The results presented here strongly suggest that the formation of multinuclear silver ethynide cage complexes 1 and 2 proceeds by a reassembly process in solution that involves transformation of the encapsulated chloride template within a Ag(14) cage into a cationic pseudo-O(h) Cl(6)Ag(8) inner core, leading to the generation of a much enlarged Cl(6)Ag(8)@Ag(30) cluster within a cluster. To our knowledge, this provides the first example of the conversion of a silver cluster into one of higher nuclearity via inner-core transformation.  相似文献   

12.
The solvothermal reactions of silver(I) salts with mono-organophosphonic acids, i.e. 3-thienylphosphonic acid (3-TPA), phenylphosphonic acid (PPA), α-naphthylphosphonic acid (α-NPA) and cyclohexylphosphonic acid (CPA), yield four new silver(I) pyrophosphonates, namely: [Ag(2)(ptp)] (1), [Ag(2)(ppp)] (2), [Ag(3)(CH(3)CN)(pnp)(pnpH)] (3), and [Ag(3)(pcp)(pcpH)] (4) [ptp(2-) = pyro-3-thienylphosphonate, ppp(2-) = pyrophenylphosphonate, pnp(2-) = pyro-α-naphthylphosphonate, pcp(2-) = pyrocyclohexylphosphoante]. In all cases, the pyrophosphonate ligands are generated in situ from their relative mono-organophosphonic acids, mediated by silver(I) ions. Single crystal structural determinations reveal that compounds 1 and 2 display two-dimensional layer architectures, while 3 and 4 show one-dimensional chain structures. Structure 1 can be best described as a layer made up of Ag(4)O(P)(6) clusters linked by O-P-O units and AgAg contacts, with the organic groups grafted on the two sides of the inorganic layer. A similar layer structure is found in 2 except that the AgAg interactions are absent. Compound 3 shows a chain structure where the silver ions are bridged by the phosphonate oxygen atoms forming an infinite Ag-O(P) chain which is decorated by the pyrophosphonate ligand and CH(3)CN. Compound 4 has another type of chain structure made up of Ag-O(P) with extensive Ag···Ag argentophilic interactions. Solid state photoluminescent properties and thermal expansion behaviors are also investigated.  相似文献   

13.
[(3,5-(CF(3))(2)Pz)(AgL)(2)](+)[Ag(5)(3,5-(CF(3))(2)Pz)(6)(CH(3)CN)](-) (L = 2-(N,N-diethylanilino-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine) shows bright and tunable emissions influenced by its supramolecular structure. Columnar stacks are assembled via cooperative interactions that include Ag(I)···Ag(I) argentophilic bonding, π···π stacking and Ag(I)···π interactions.  相似文献   

14.
Syntheses of a number of adducts of silver(I) (bi-)carbonate with triphenylphosphine, both mechanochemically, and from solution, are described, together with their infra-red spectra, (31)P CP MAS NMR and crystal structures. Ag(HCO(3)):PPh(3) (1:4) has been isolated in the ionic form [Ag(PPh(3))(4)](HCO(3))·2EtOH·3H(2)O. Ag(2)CO(3):PPh(3) (1:4) forms a binuclear neutral molecule [(Ph(3)P)(2)Ag(O,μ-O'·CO)Ag(PPh(3))(2)](·2H(2)O), while Ag(HCO(3)):PPh(3) (1:2) has been isolated in both mononuclear and binuclear forms: [(Ph(3)P)(2)Ag(O(2)COH)] and [(Ph(3)P)(2)Ag(μ-O·CO·OH)(2)Ag(PPh(3))(2)] (both unsolvated). A more convenient method for the preparation of the previously reported copper(I) complex [(Ph(3)P)(2)Cu(HCO(3))] is also reported.  相似文献   

15.
The new ligand 2-pyridinyl-3-pyridinylmethanone (L) proves to be an excellent building block for the construction of single-strand helical architectures. A series of helical complexes have been synthesized by the reaction of L with various metal salts, in which L exhibits three kinds of coordination modes involving two kinds of bridging conformations, resulting in four types of single-strand helical chains. The counter anions in the series of 2(1) helical silver(I) complexes {[Ag(L)]X}(infinity)(X = NO(3), 1; PF(6), 2; BF(4), 3; ClO(4), 4; CF(3)CO(2), 5; CF(3)SO(3), 6) are fully or partially embedded inside the cylindrical helix, and the pitch length corresponds not only to the size of the anion but also to its manner of docking into the groove of the helix. Formation of the helical structure in {[Cu(L)(CH(3)CN)(H(2)O)(ClO(4))]ClO(4)}(infinity)(7) is driven by Ow-H...O (perchlorate) hydrogen bonding that leads to a stable triangular motif which rigidly fixes the configuration of the helix. In {[Co(L)(H(2)O)(3)](ClO(4))(2).2H(2)O}(infinity)(8) and {[Zn(L)(H(2)O)(3)](CF(3)SO(3))(2).H(2)O}(infinity)(9), similar helical chains without anion embedment suggest that the pitch length can be tuned by the size of metal cations. Notably, complex {[Ag(L)]CF(3)SO(3)}(infinity)(10), a conformational polymorph of , has a 4(1) helix induced by argentophilic interaction.  相似文献   

16.
Reactions between 2,6-diformyl-4-methylphenol (DFMF) and tris(hydroxymethyl) aminomethane (THMAM = H(3)L2) in the presence of copper(II) salts, CuX(2) (X = CH(3)CO(2)(-), BF(4)(-), ClO(4)(-), Cl(-), NO(3)(-)) and Ni(CH(3)CO(2))(2) or Ni(ClO(4))(2)/NaC(6)H(5)CO(2), sodium azide (NaN(3)), and triethylamine (TEA), in one pot self-assemble giving a coordination polymer consisting of repeating pentanuclear copper(II) clusters {[Cu(2)(H(5)L(2-))(μ-N(3))](2)[Cu(N(3))(4)]·2CH(3)OH}(n) (1) and hexanuclear Ni(II) complexes [Ni(6)(H(3)L1(-))(2)(HL2(2-))(2)(μ-N(3))(4)(CH(3)CO(2))(2)]·6C(3)H(7)NO·C(2)H(5)OH (2) and [Ni(6)(H(3)L1(-))(2)(HL2(2-))(2)(μ-N(3))(4)(C(6)H(5)CO(2))(2)]·3C(3)H(7)NO·3H(2)O·CH(3)OH (3). In 1, H(5)L(2-) and in 2 and 3 H(3)L1(-) and HL2(2-) represent doubly deprotonated, singly deprotonated, and doubly deprotonated Schiff-base ligands H(7)L and H(4)L1 and a tripodal ligand H(3)L2, respectively. 1 has a novel double-stranded ladder-like structure in which [Cu(N(3))(4)](2-) anions link single chains comprised of dinuclear cationic subunits [Cu(2)(H(5)L(2-))(μ-N(3))](+), forming a 3D structure of interconnected ladders through H bonding. Nickel(II) clusters 2 and 3 have very similar neutral hexanuclear cores in which six nickel(II) ions are bonded to two H(4)L1, two H(3)L2, four μ-azido, and two μ-CH(3)CO(2)(-)/μ-C(6)H(5)CO(2)(-) ligands. In each structure two terminal dinickel (Ni(2)) units are connected to the central dinickel unit through four doubly bridging end-on (EO) μ-azido and four triply bridging μ(3)-methoxy bridges organizing into hexanuclear units. In each terminal dinuclear unit two nickel centers are bridged through one μ-phenolate oxygen from H(3)L1(-), one μ(3)-methoxy oxygen from HL2(2-), and one μ-CH(3)CO(2)(-) (2)/μ-C(6)H(5)CO(2)(-) (3) ion. Bulk magnetization measurements on 1 show moderately strong antiferromagnetic coupling within the [Cu(2)] building block (J(1) = -113.5 cm(-1)). Bulk magnetization measurements on 2 and 3 demonstrate that the magnetic interactions are completely dominated by ferromagnetic coupling occurring between Ni(II) ions for all bridges with coupling constants (J(1), J(2), and J(3)) ranging from 2.10 to 14.56 cm(-1) (in the ? = -J(1)(?(1)?(2)) - J(1)(?(2)?(3)) - J(2)(?(3)?(4)) - J(1)(?(4)?(5)) - J(1)(?(5)?(6)) - J(2)(?(1)?(6)) - J(3)(?(2)?(6)) - J(3)(?(2)?(5)) - J(3)(?(3)?(5)) convention).  相似文献   

17.
1:1 AgX:tz(2)(CH(2)) (X = NO(3), NO(2), ClO(4)), 3:4 (X = O(3)SCF(3) (=OTf), O(2)CCF(3) (= tfa)), and 2:1 adducts (X = BrO(3)) have been synthesized and characterized in the solid state and in solution by analyses, spectral (IR, far-IR, (1)H and (13)C NMR, ESI MS) data, and conductivity measurements. The crystal structures of the 1:1 AgNO(3):tz(2)(CH(2)) and AgNO(2):tz(2)(CH(2)) adducts determined by X-ray studies show that tz(2)(CH(2)) coordinates to silver through the exodentate nitrogen atoms at the 4-positions of the triazole rings, yielding neutral polymers, while the ionic Ag(OTf):tz(2)(CH(2)) (3:4) adduct has a three-dimensional polymeric cation. The NMR and ESI MS data suggest that tz(2)(CH(2)) is only weakly coordinating, adducts between Ag(I) and CH(3)CN being more prevalent in acetonitrile solution.  相似文献   

18.
Synthetic, spectroscopic, and single-crystal X-ray studies are reported for several complexes of silver(I) with the N(2),O(2)-bichelating Q(py) ligand (HQ(py) = 1-(2-pyridyl)-3-methyl-4-trifluoroacetylpyrazol-5-one). Direct interaction between HQ(py) and AgNO(3) in methanol, in the presence of NaOCH(3), affords derivative Ag(Q(py)), showing a polynuclear structure composed of dinuclear building blocks with two different Ag environments and two Q(py) donors differently connected. By adding neutral ligands such as PR(3) (R = Ph, Cy, C(6)H(4)-o-CH(3), C(6)H(4)-p-F, Bu(i)) to Ag(Q(py)), dinuclear Ag(Q(py))(PR(3)) derivatives have been isolated, containing bridging N(2),O-exotridentate Q(py) donors spanning a pair of AgPR(3) moieties. Reaction of Ag(Q(py))(PPh(3)) with excess PPh(3) produces the mononuclear Ag(Q(py))(PPh(3))(2) containing N(2)-chelate Q(py). Ag(Q(py)) interacts with 1,2-bis(diphenylphosphino)ethane (dppe) yielding the derivative Ag(Q(py))(dppe), having a polynuclear structure in the solid state which is seemingly disrupted in solution, with the formation of two new species, a mononuclear neutral compound and a dinuclear ionic one. By the interaction of Ag(Q(py)) with nitrogen donors L (L = imidazole (imH), 1-methylimidazole (Meim), 1-methyl-2-mercaptoimidazole (Hmimt), 1,10-phenanthroline (phen)), mononuclear species Ag(Q(py))(L) have been obtained, where Q(py) is coordinated to silver in N(2)-chelating mode. Ag(Q(py))(PPh(3))(2) reacts with SnRCl(3) (R = Ph, Bu(n)) affording heterotrimetallic [[(Ph(3)P)(2)AgCl](2)SnRCl(3)] derivatives.  相似文献   

19.
Chi YN  Huang KL  Cui FY  Xu YQ  Hu CW 《Inorganic chemistry》2006,45(26):10605-10612
Using two ligands, 4,6-bis(2-pyridyl)-2-aminopyrimidine (L1) with two N,N'-chelating sites and 4-(2-pyridyl)-6-(4-pyridyl)-2-aminopyrimidine (L2) (as the isomer of L1) containing one chelating site and one bridging unit, a series of novel Ag(I) complexes varying from zero- to two-dimensions have been prepared and their crystal structures determined via single-crystal X-ray diffraction. The two ligands are employed for the first time in coordination chemistry. The structures of compounds 1-3 are directed by the counteranions adopted in the reaction system: The reaction of L1 with AgNO3 yielded a dimer [Ag2L12](NO3)2 (1). The reaction of L1 with AgCF3SO3 led to a one-dimension "V-shaped" chain {[AgL1](CF3SO3)}n (2). When AgSCN was used, a one-dimension ladder {[Ag2L1(SCN)2].H2O}n (3) was obtained. While ligand L2 reacted with AgNO3, a two-dimension {[Ag2(L2)2](NO3)2.H2O}n (4) was prepared with the help of an argentophilic interaction. Compounds 1-4 display room-temperature photoluminescence.  相似文献   

20.
Two new flexible exo-bidentate ligands were designed and synthesized, incorporating different backbone chain lengths bearing two salicylamide arms, namely 2,2'-(2,2'-oxybis(ethane-2,1-diyl)bis(oxy))bis(N-benzylbenzamide) (L(I)) and 2,2'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(N-benzylbenzamide) (L(II)). These two structurally related ligands are used as building blocks for constructing diverse lanthanide polymers with luminescent properties. Among two series of lanthanide nitrate complexes which have been characterized by elemental analysis, TGA analysis, X-ray powder diffraction, and IR spectroscopy, ten new coordination polymers have been determined using X-ray diffraction analysis. All the coordination polymers exhibit the same metal-to-ligand molar ratio of 2?:?3. L(I), as a bridging ligand, reacts with lanthanide nitrates forming two different types of 2D coordination complexes: herringbone framework {[Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)](∞) (Ln = La (1), and Pr (2), m = 1, 2)} as type I,; and honeycomb framework {[Ln(2)(NO(3))(6)(L(I))(3)·nCH(3)OH](∞) (Ln = Nd (3), Eu (4), Tb (5), and Er (6), n = 0 or 3)} as type II, which change according to the decrease in radius of the lanthanide. For L(II), two distinct structure types of 1D ladder-like coordination complexes were formed with decreasing lanthanide radii: [Ln(2)(NO(3))(6)(L(II))(3)·2C(4)H(8)O(2)](∞) (Ln = La (7), Pr (8), Nd (9)) as type III, [Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)·nCH(3)OH](∞) (Ln = Eu (10), Tb (11), and Er (12), m, n = 2 or 0) as type IV. The progressive structural variation from the 2D supramolecular framework to 1D ladder-like frameworks is attributed to the varying chain length of the backbone group in the flexible ligands. The photophysical properties of trivalent Sm, Eu, Tb, and Dy complexes at room temperature were also investigated in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号