首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   0篇
化学   100篇
数学   3篇
物理学   22篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   4篇
  2005年   6篇
  2004年   6篇
  2003年   8篇
  2002年   13篇
  2001年   4篇
  2000年   6篇
  1999年   4篇
  1998年   2篇
  1996年   6篇
  1995年   5篇
  1994年   4篇
  1993年   5篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   5篇
  1979年   6篇
  1978年   5篇
  1977年   1篇
  1976年   2篇
  1975年   4篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
排序方式: 共有125条查询结果,搜索用时 31 毫秒
1.
2.
3.
The platinacyclobutane complexes PtCl2L2(C3H5Me)], L  pyridine, CD3CN, or tetrahydrofuran, exist as mixtures of isomers containing PtCH2CHMeCH2 or PtCHMeCH2CH2 groups in rapid equilibrium. Decomposition occurs in some cases to give [PtCl2L(CH3CH2CHCH2)]. Stereospecific skeletal isomerisation also occurs in metallocyclobutanes containing the groups PtCHRCHRCH2  PtCHRCH2CHR, when R  aryl further decomposition gives ν-allylplatinum complexes.  相似文献   
4.
A series of complexes trans-[PdCl(2)L(2)] has been prepared by the reaction of [PdCl(2)(PhCN)(2)] and/or Na(2)[PdCl(4)] with L = pyridine or quinoline ligands having one or two carboxylic acid groups. These complexes can form 1-D polymers through O-H.O hydrogen bonding between the carboxylic acid groups, as demonstrated by structure determinations of [PdCl(2)(NC(5)H(4)-4-COOH)(2)], [PdCl(2)(NC(5)H(4)-3-COOH)(2)], and [PdCl(2)(2-Ph-NC(9)H(5)-4-COOH)(2)]. In some cases, solvation breaks down the O-H.O hydrogen-bonded structures, as in the structures of [PdCl(2)(NC(5)H(4)-3-COOH)(2)].2DMSO and [PdCl(2)(2-Ph-NC(9)H(5)-4-COOH)(2)].4DMF, while pyridine-2-carboxylic acid underwent deprotonation to give the chelate complex [Pd(NC(5)H(4)-2-C(O)O)(2)]. The complexes trans-[PdCl(2)L(2)], L = pyridine-3,5-dicarboxylic acid or 2,6-dimethyl pyridine-3,5-dicarboxylic acid, self-assembled to give 2-D sheet structures, with hydrogen bonding between the carboxylic acid groups mediated by solvate methanol or water molecules. In the cationic complexes [PdL'(2)L(2)](2+) (L'(2) = Ph(2)PCH(2)PPh(2), Ph(2)P(CH(2))(3)PPh(2); L = pyridine carboxylic acid; anions X(-) = CF(3)SO(3)(-)), hydrogen bonding between the carboxylic acid groups and anions or solvate acetone molecules occurred, and only in one case was a polymeric complex formed by self-assembly.  相似文献   
5.
The self-assembly of complex cationic structures by combination of cis-blocked square planar palladium(II) or platinum(II) units with bis(pyridyl) ligands having bridging amide units has been investigated. The reactions have yielded dimers, molecular triangles, and polymers depending primarily on the geometry of the bis(pyridyl) ligand. In many cases, the molecular units are further organized in the solid state through hydrogen bonding between amide units or between amide units and anions. The molecular triangle [Pt(3)(bu(2)bipy)(3)(mu-1)(3)](6+), M = Pd or Pt, bu(2)bipy = 4,4'-di-tert-butyl-2,2'-bipyridine, and 1 = N-(4-pyridinyl)isonicotinamide, stacks to give dimers by intertriangle NH.OC hydrogen bonding. The binuclear ring complexes [[Pd(LL)(mu-2)](2)](CF(3)SO(3))(4), LL = dppm = Ph(2)PCH(2)PPh(2) or dppp = Ph(2)P(CH(2))(3)PPh(2) and 2 = NC(5)H(4)-3-CH(2)NHCOCONHCH(2)-3-C(5)H(4)N, form transannular hydrogen bonds between the bridging ligands. The complexes [[Pd(LL)(mu-3)](2)](CF(3)SO(3))(4), LL = dppm or dppp, L = PPh(3), and 3 = N,N'-bis(pyridin-3-yl)-pyridine-2,6-dicarboxamide, and [[Pd(LL)(mu-4)](2)](CF(3)SO(3))(4), LL = dppm, dppp, or bu(2)bipy, L = PPh(3), and 4 = N,N'-bis(pyridin-4-yl)-pyridine-2,6-dicarboxamide, are suggested to exist as U-shaped or square dimers, respectively. The ligands N,N'-bis(pyridin-3-yl)isophthalamide, 5, or N,N'-bis(pyridin-4-yl)isophthalamide, 6, give the complexes [[Pd(LL)(mu-5)](2)](CF(3)SO(3))(4) or [[Pd(LL)(mu-6)](2)](CF(3)SO(3))(4), but when LL = dppm or dppp, the zigzag polymers [[Pd(LL)(mu-6)](x)](CF(3)SO(3))(2)(x) are formed. When LL = dppp, a structure determination shows formation of a laminated sheet structure by hydrogen bonding between amide NH groups and triflate anions of the type NH-OSO-HN.  相似文献   
6.
Reaction of excess MeLi and MeI with [PtCl2SMe2)2] gives the first binuclear tetramethylplatinum(IV) complex [Pt2Me8(μ-SMe2)2]. The characterization of this complex, and its reactions with donor ligands to give cis-[PtMe4L2] (L2 = Ph2PCH2PPh2, Ph2PCH2CH2PPh2, 2,2′-bipyridyl, 1,10-phenanthroline or L = PMe2Ph, PMePh2) are described.  相似文献   
7.
Synchrotron techniques, X-ray-excited optical luminescence (XEOL) combined with X-ray absorption fine structures (XAFS), have been used to study the electronic structure and optical properties of a series of luminescent gold(I) complexes with diphosphine and bipyridine ligands using tunable X-rays (in the regions of the C and P K-edges and the Au L3-edge) and UV from synchrotron light sources. The effects of gold-ligand and aurophilic interactions on the luminescence from these gold(I) complexes have been investigated. It is found that the luminescence from these complexes is phosphorescence, primarily due to the decay of the Au (5d) --> PR3 (pi*), metal to ligand charge transfer (MLCT) excitation as well as contributions from the conjugated pi-system in the bipyridine ligands via the gold-nitrogen bond. The large Au 5d spin-orbit coupling enhances the intersystem crossing. The elongation of the hydrocarbon chain of the diphosphine ligand does not greatly affect the spectral features of the luminescence from the gold(I) complexes. However, the intensity of the luminescence was reduced significantly when the bipyridine ligand was replaced with 1,2-bis(4-pyridylamido)benzene. The aurophilic interaction, as investigated by EXAFS at the Au L3-edge, is shown to be only one of the factors that contribute to the luminescence of the complexes.  相似文献   
8.
Reaction of cis-[Ptph2(SMe2)2] with Me2PCH2PMe2 (dmpm) gave cis-[PtPh2(dmpm-P)2] (1) or cis,cis-[Pt2Ph4(μ-dmpm)2] (2) and reaction of 1 with [Pt2Me4(μ-SMe2)2] gave cis,cis-[Ph2Pt(μ-dmpm)2PtMe2] (3). Reaction of 1 with trans-[PtClR(SMe2)2] gave cis,trans-[Ph2Pt(μ-dmpm)2PtClR], R = Me (5) or Ph (6), and in polar solvents, these isomerized to give [Ph2Pt(μ-dmpm)2PtR]+Cl. When R = Me, further isomerization via the phenyl group transfer gave [PhMePt(μ-dmpm)2PtPh]+Cl. Oxidative addition of methyl iodide occurred reversibly at the cis-[PtMe2P2 unit of 3 to give cis,fac-[Ph2Pt(μ-dmpm)2PtIMe3] but complex 2 failed to react with MeI. A comparison with similar known complexes of Ph2PCH2PPh2 (dppm) is made and differences are attributed primarily to the lower steric hindrance of dmpm.  相似文献   
9.
The self-assembly of racemic and enantiopure binaphthyl-bis(amidopyridyl) ligands 1,1'-C(20)H(12){NHC(=O)-4-C(5)H(4)N}(2), 1, and 1,1'-C(20)H(12){NHC(=O)-3-C(5)H(4)N}(2), 2, with mercury(II) halides (HgX(2); X = Cl, Br, I) to form extended metal-containing arrays is described. It is shown that the self-assembly can lead to homochiral or heterochiral polymers or macrocycles, through self-recognition or self-discrimination of the ligand units, and the primary materials can further self-assemble through hydrogen bonding between amide substituents. In addition, the formation of macrocycles or polymers can be influenced by the presence or absence of excess mercury(II) halide, through a template effect, and mercury(II) halide inclusion complexes may be formed. In one case, an unusual polymeric compound was obtained, with 1 guest HgX(2) molecule for every 12 mercury halide units in the polymer.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号