首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用高压密闭酸溶溶解锑矿石,用电感耦合等离子体原子发射光谱法(ICP-AES)测定锑矿石中As、Sb、Al、Fe、Ca、Mg、K、Na、Ti、Mn等10种元素的含量。在装有0.10 g样品的消解内罐中依次加入体积比为3∶1的盐酸-硝酸混合溶液1 mL和氢氟酸2 mL,在150℃烘箱中保温24 h。取出内罐,在电热板上以150℃蒸发至近干。加入体积比为3∶1的盐酸-硝酸混合溶液0.5 mL再次蒸发至干,此步骤重复一次。加入体积比为1∶3∶4的硝酸-盐酸-水混合溶液5 mL,在烘箱中130℃加热3 h。用体积比为1∶3∶36的硝酸-盐酸-水混合溶液定容至100 mL,按照优化的ICP-AES仪器工作条件测定。结果显示:10种元素的质量浓度均在一定范围内与其对应光谱响应值呈线性关系,检出限(3s)为1.98~77.20μg·g~(-1);按照试验方法分析4种标准物质,所得相对误差为-2.8%~10%;对2种标准物质平行测定12次,测定值的相对标准偏差(RSD)为0.25%~6.6%。  相似文献   

2.
建立了微波消解-电感耦合等离子体质谱法(ICP-MS)测定深海沉积物中稀土总量的方法。将深海沉积物湿样烘干、压碎,剔除杂质,过筛后再次烘干。称取0.20 g样品于微波消解罐中,加入5.0 mL硝酸和2.0 mL氢氟酸,在程序升温条件下进行微波消解,结束后加入3.0 mL高氯酸进行赶酸,再加入50%(体积分数)硝酸溶液加热溶解样品中的盐类。冷却后,用水定容至50 mL。分取5.0 mL,用2%(体积分数)硝酸溶液定容至50 mL,在线加入10μg·L~(-1)铟内标溶液,按照优化的ICP-MS工作条件测定稀土氧化物含量。结果显示:15种稀土氧化物的质量浓度在一定范围内和其与内标元素铟响应值的比值呈线性关系,相关系数均为0.999 9,检出限(3s)为0.006 2~0.060 0μg·g~(-1)。对3种深海沉积物样品进行精密度、加标回收及方法比对试验,结果显示:所得测定值的相对标准偏差(n=11)为1.1%~2.9%,回收率为96.0%~104%,方法和国家标准方法GB/T 17417.1-2010所得的测定值基本一致。  相似文献   

3.
选择电感耦合等离子体质谱法测定地球化学样品中50种元素的含量。取0.100 0g样品,置于高压密闭消解罐的聚四氟乙烯(PTFE)内胆中,加入氢氟酸3mL及硝酸1mL,放入密闭钢套中,拧紧。在150℃下消解2h,待冷却降压后取出内胆,加入高氯酸0.25mL,于150℃加热蒸发至白烟冒尽。加入硝酸1mL和水1mL,将内胆置于钢套中,于150℃再次密闭消解12h。自然冷却,将内胆中溶液转移至PTFE比色管中,加水定容至10.0 mL,摇匀。分取此母液1.00mL,置于10mL PTFE比色管中,用约φ2.2%硝酸溶液稀释至10.0mL,保持溶液中硝酸浓度在3%左右。此溶液用于测定(S1组)Li、Be、V等28种元素和(S2组)Sc、Y、La等16种元素。另取母液1.00mL,置于10mL PTFE比色管中,加入φ10%氢氟酸溶液2滴,500g·L~(-1)的酒石酸溶液1.0mL,用约φ2.5%硝酸溶液稀释至10.0mL,摇匀。此溶液供测定(S3组)Ti、Zr、Nb等6种元素。对质谱干扰较严重的被测元素分别建立了11个校准方程用于校准相关测定数据。用所提出方法分析了6种地球化学国家一级标准物质(GBW 07359,GBW 07360,GBW 07361,GBW07408,GBW 07427,GBW 07446),对其中与本方法有关的50种元素进行测定,所得结果与认定值相符,达到了地质矿产实验室测试质量规范的要求。  相似文献   

4.
锰矿样品在密闭的消解罐中用盐酸、硝酸、过氧化氢及氢氟酸在微波消解仪中进行消解,所得溶液移入聚四氟乙烯容量瓶中,加水定容至100mL供电感耦合等离子体原子发射光谱法分析用。此方法中不采用加入硼酸络合过剩的氢氟酸,以避免因加入硼酸而引起的干扰。为抵消基体干扰,在制备标准曲线时于各试液中加入一定量的锰(Ⅱ)溶液。选择测定铝、镁及磷的分析谱线依次为396.152,280.270,185.942nm。应用此方法分析了2件锰矿标准物质,测得上述3种元素的测定结果与认定值相符,测定值的相对标准偏差(n=11)在0.63%~1.18%之间。  相似文献   

5.
提出了微波消解-电感耦合等离子体质谱法(ICP-MS)同时测定有机肥料中As、Cd、Co、Cr、Ni、Pb、Sb、Tl、V等9种有毒有害元素含量的方法。取0.10 g有机肥料样品于聚四氟乙烯微波消解罐中,以2.5 mL盐酸、7.5 mL硝酸和2.0 mL氢氟酸为混合酸进行微波消解。消解结束后,于140℃赶酸,然后加入1.0 mL 50%(体积分数)硝酸溶液,再用水定容至50 mL,摇匀,过滤,取滤液待测,在线加入混合内标溶液。结果表明:9种元素标准曲线的线性范围均为2~100μg·L-1,方法检出限(3s)为0.59~66.75μg·kg-1;按照标准加入法对典型有机肥料样品进行回收试验,9种元素测定值的相对标准偏差(n=7)为2.0%~3.5%,回收率为81.5%~112%。  相似文献   

6.
将采集的污泥样品晾干并碾碎至粒径为150μm的细粉,置于105℃温度条件下烘干4 h,称取烘干的样品,用硝酸-氢氟酸-高氯酸混合酸消解后,将溶液定容至250 mL容量瓶中。分取5.00 mL试液置于100 mL容量瓶中用硝酸(0.2+99.8)溶液定容至100 mL,用火焰原子吸收光谱法按所选仪器工作条件测定其中4种重金属元素锰、铜、镉及铅的含量。方法的检出限(2s)分别为0.006 5(锰),0.001 6(铜),0.001 9(镉)及0.020 7(铅)mg.L-1。用标准加入法做回收试验,测得回收率在92.3%~98.6%之间。  相似文献   

7.
由于头孢卡品酯的理化性质及其颗粒制剂包含很多难溶的辅料,为准确测定盐酸头孢卡品酯颗粒中镉、铅、砷、汞、钴、钒、镍、钼、铬等9种元素杂质的含量,尤其是挥发性元素汞,需要对样品进行络合和稳定性处理。以6 mL硝酸、1.5 mL盐酸、0.1 mL氢氟酸为消解酸,于180℃微波消解50 mg盐酸头孢卡品酯颗粒样品30 min;消解结束后,反复赶酸,再用体积比为0.1∶100的氢氟酸和盐酸-硝酸-水(体积比为1∶4∶95)的混合液定容至50 mL,采用电感耦合等离子体质谱法测定样品中9种元素杂质的含量,内标法定量。结果显示:9种元素杂质的质量浓度在一定范围内与其对应的响应值与内标响应值的比值呈线性关系,检出限(3s/k)为0.001~0.070μg·L^(-1);对6份同一加标样品溶液进行测定,9种元素杂质测定值的相对标准偏差为2.9%~5.1%;对实际样品进行加标回收试验,回收率为82.0%~104%。方法用于实际样品分析,9种元素杂质的含量均低于元素杂质指导原则规定的允许浓度限值。  相似文献   

8.
称取经四分采样,风干并粉碎过0.149mm孔径样筛的土壤样品0.200 0g,置于消解罐中,加入选定的酸体系(HNO36mL,HCl 2mL及HF 2mL)。将消解罐置于微波消解仪中按程序升温模式进行消解。将消解罐移至赶酸仪中,于170℃使溶液蒸缩至2~3mL。溶液中有残留黑色不溶物,加入高氯酸3mL,于180℃继续加热消解至样品溶解完全,将溶液蒸缩至黏稠状,冷却后,将溶液用硝酸(1+99)溶液洗涤并定容至25.0mL。按仪器工作条件采用电感耦合等离子体原子发射光谱法在所选定的分析谱线处测定其中8种重金属元素(Co、Cr、Cu、Ni、Mn、Pb、V及Zn)的含量。8种元素的质量浓度在一定范围内与其信号强度值呈线性关系,测得8种元素的检出限(3s)在0.3~6.6μg·L~(-1)范围内,其测定值的相对标准偏差(n=6)均小于2%。  相似文献   

9.
称取0.100 0g试样于聚四氟乙烯消解罐中,加入3mL盐酸,1mL硝酸,1mL氢氟酸,进行微波消解,消解完成后冷却,加入50g·L-1硼酸溶液10mL,继续消解3min后,将试液用水定容至100mL,采用电感耦合等离子体原子发射光谱法测定其中的钛、硅、铝、钙、镁、钒、锰、磷、镍和铬。运用基体匹配法消除了基体效应。各元素的质量浓度在一定范围内与分析谱线的强度呈线性关系,检出限(3s)在1.2~44μg·L~(-1)之间。采用本方法测定标准样品,结果与认定值相符,测定值的相对标准偏差(n=8)均小于5.0%。本方法对实际样品的测定值与湿法化学法及原子吸收光谱法测得结果一致。  相似文献   

10.
建立了微波消解-电感耦合等离子体质谱法(ICP-MS)同时测定铝土矿中锂、铬、铜、铁、钛、钾、钠、钙、镁、铅、锌等11种金属元素含量的方法。将铝土矿粉碎、研磨和干燥后,取0.1 g样品,加入3 mL硫酸、1 mL硝酸、2 mL氢氟酸和3 mL盐酸,按升温程序微波消解样品,加40 g·L~(-1)硼酸溶液10 mL,继续在120℃下消解10 min,使消解液变澄清。冷却后取出,180℃加热至近干,用1%(体积分数)硝酸溶液稀释,按照ICP-MS条件测定。通过用10 g·L~(-1)铝基体溶液配制混合标准溶液系列并加入内标元素Sc、Ge、Bi的方法来消除基体干扰,选择合适的待测元素同位素的方法来消除谱线重叠干扰。结果显示:11种元素的质量浓度均在一定范围内与其对应的响应值与内标元素响应值的比值呈线性关系,检出限(3s)为0.011~1.400 mg·kg~(-1)。对实际样品进行加标回收试验,测定值为0.13~72.21 mg·L~(-1),测定值的相对标准偏差(n=6)为0.69%~2.6%,回收率为94.0%~106%;此方法用于分析3种铝土矿成分分析标准物质GBW 07177、GBW 07179、GBW 07180,所得测定值均在认定值要求的范围内。  相似文献   

11.
将烟用香精和料液样品0.3 g(精确至0.001 g)置于全自动石墨消解仪消解罐中,分3次加入消解液(共计10 mL硝酸、1 mL高氯酸),在170℃的最高消解温度下,样品消解完全.所得溶液用水定容至50 mL,采用电感耦合等离子体质谱法(ICP-MS)测定其中砷、铅、镉、铬、镍等元素的含量.以铟为内标,铬、镉、镍、铅、砷元素的测量同位素分别为^(52)Cr、^(111)Cd、^(60)Ni、^(208)Pb、^(75)As,使用动态反应池(DRC)模式消除了铬、砷元素的质谱干扰,铬、镉、镍、铅等元素的测定选择氦气碰撞模式,砷元素的测定选择氢气反应模式.结果表明,5种元素的质量浓度在一定范围内与各元素与内标计数值的比值呈线性关系,检出限(3s)为0.016~0.035 mg·kg^(-1).按标准加入法进行回收试验,各元素回收率为91.5%~111%,相对标准偏差(n=6)为0.28%~3.1%.方法用于10个烟用香精和料液样品的分析,铬、砷、镍的检出量分别为0.019~0.061 mg·kg^(-1),0.039~0.061 mg·kg^(-1)和0.022~0.031 mg·kg^(-1),镉和铅未检出.  相似文献   

12.
微波消解高碳铬铁样品及其中铬硅磷的测定   总被引:1,自引:0,他引:1  
提出了微波消解法溶解高碳铬铁。将粒径小于0.076 mm样品0.200 0 g置于消解罐中,加入高氯酸5 mL,氢氟酸1 mL,按设定程序消解。于消解所得溶液中加入饱和硼酸溶液5 mL后,定容至200 mL。分取100.0 mL溶液用过硫酸铵氧化,硫酸亚铁铵标准溶液电位滴定法测定其铬量。另分取50.00 mL溶液,用电感耦合等离子体原子发射光谱法测定硅及磷量,选择251.612,213.618 nm分别作为测定硅和磷的分析线。按此方法分析了3个标准样品,测得结果与认定值一致。铬、硅、磷3元素测定值的平均相对标准偏差(n=6)依次为0.09%,0.49%和2.2%。  相似文献   

13.
利用硝酸、盐酸、氢氟酸混合液和微波消解仪密闭消解样品,建立了一种微波消解-电感耦合等离子体质谱(ICP-MS)法同时测定土壤中铜、铅、锌、锰、钒、铬、镉、镍、锡、铊10种重金属的分析方法。取0.100 0 g土壤样品于消解罐中,采用4 mL硝酸+1 mL盐酸+1 mL氢氟酸消解体系按照设定程序进行微波消解,冷却,定容后利用电感耦合等离子体质谱法进行。结果表明,以铑元素作为内标,10种重金属元素在一定的质量浓度范围内与其信号强度呈线性关系,线性相关系数均不小于0.999 8,检出限为0.010~0.92 mg/kg。对3种标准物质进行测定,测定值的相对标准偏差为2.89%~7.72%(n=10),相对偏差为-5.95%~4.11%。该方法分析流程简单,工作效率高,检出限低,适合大批量土壤样品的多元素同时分析。  相似文献   

14.
移取小鼠血浆样品100μL于消解罐中,加入5mL硝酸与2mL 30%(质量分数)过氧化氢溶液进行微波密闭消解,冷却后,将样品溶液赶酸至少于0.5mL,用水定容至25mL,以73 Ge为内标,选用标准检测模式(STD)。硒的线性范围为0.2~20μg·L^(-1),检出限(3s)为6.75μg·L^(-1)。加标回收率在93.1%~105%之间,测定值的相对标准偏差(n=6)小于5.0%。利用本方法测定补硒小鼠血浆中的硒含量,可观察到硒含量随给药时间而变化。  相似文献   

15.
移取小鼠血浆样品100μL于消解罐中,加入5mL硝酸与2mL 30%(质量分数)过氧化氢溶液进行微波密闭消解,冷却后,将样品溶液赶酸至少于0.5mL,用水定容至25mL,以73 Ge为内标,选用标准检测模式(STD)。硒的线性范围为0.2~20μg·L~(-1),检出限(3s)为6.75μg·L~(-1)。加标回收率在93.1%~105%之间,测定值的相对标准偏差(n=6)小于5.0%。利用本方法测定补硒小鼠血浆中的硒含量,可观察到硒含量随给药时间而变化。  相似文献   

16.
竹叶样品置于聚四氟乙烯罐中,加入硝酸及过氧化氢后在微波消解仪中按设定程序加热消解。所得样品溶液定容至25mL后用电感耦合等离子体原子发射光谱法测定其中铬、锌、镍、钴、铁、硼、锰、铜和锶等9种元素的含量。9种元素的质量浓度在0.05~2.00mg.L-1范围内与其发射强度呈线性关系,方法的检出限(3s)在0.04~0.50μg.g-1之间。方法应用于分析了一种杨树叶标准物质(GBW 07604),所得9种元素的测定结果与证书值相符。方法的回收率在87.0%~107.6%之间。  相似文献   

17.
将0.100 0 g样品和0.500 0 g氟化氢铵粉末置于密闭消解罐中,加入几滴水润湿,再用10 mL盐酸、5 mL硝酸和2 mL高氯酸于200℃消解2.0 h,冷却后于200℃蒸发至近干。残渣用5 mL硝酸提取6~8 min,用水定容至100 mL,在分析谱线460.733 nm下采用电感耦合等离子体原子发射光谱法测定其中锶的含量,以两点校正法进行背景修正,用基体匹配的标准溶液系列绘制工作曲线。结果表明,锶的质量浓度在0.50~20.00 mg·L^(-1)内与对应的响应强度呈线性关系,检出限(3s)为5μg·g^(-1)。对某一样品测定12次,测定值的相对标准偏差为2.5%。对实际样品进行加标回收试验,回收率分别为98.0%和101%。  相似文献   

18.
建立了四酸微波消解-电感耦合等离子体原子发射光谱法(ICP-AES)测定土壤中6种重金属元素的方法。取0.10~0.20 g土壤样品用少量水润湿,加入6 mL硝酸、2 mL盐酸、1 mL氢氟酸和1 mL 30%(质量分数,下同)过氧化氢溶液,静置15 min使其充分反应,置于微波消解仪中按升温程序消解。消解液置于电热板上以140℃加热至溶液近干,用1%(体积分数)硝酸溶液溶解残渣并将其定容至25 mL,按优化的ICP-AES条件分析。所选的Pb、As、Ni、Cu、Zn、Cr的分析谱线分别为220.353,189.042,231.604,327.396,213.856,267.716 nm。结果显示:6种元素的质量浓度分别在1.00 mg·L~(-1)(Pb、As、Cu、Ni)内和2.00 mg·L~(-1)(Cr、Zn)内与其对应的光谱响应值呈线性关系,检出限(3s)为0.29~5.76μg·L~(-1);对标准样品进行6次重复测定,测定值的相对标准偏差为0.60%~2.6%,测定值与认定值基本一致。  相似文献   

19.
工业纯铁样品用盐酸、硝酸、氢氟酸微波消解,消解液用水定容至100.0mL,采用电感耦合等离子体质谱法测定上述溶液中硼、镁、钙、钛、铬、镍、铜、锆、铌、锡、锑、铅、铋等13种元素的含量。采用内标法定量,13种元素的线性范围均为0.000 10%~0.015 00%,检出限(3s)为0.24~0.66μg·L^-1。用标准加入法做方法的回收试验,测得回收率为84.0%~106%。方法应用于纯铁标准样品(GBW 01401b、GBW 01402g、SRM 2167、YSBC 11247-2007)的分析,测定值与认定值相符,测定值的相对标准偏差(n=6)为0.80%~9.6%。  相似文献   

20.
样品(0.400 0 g)置于50 mL样品管中,加入盐酸-硝酸-水(3+1+4)混合液10 mL,饱和氟化氢铵溶液1.0 mL,经石墨消解仪斜坡升温进行消解。消解液冷却10 min,用水定容至50 mL。分取10.0 mL,用水稀释至20 mL,所得溶液采用电感耦合等离子体质谱法测定其中银及铂族元素(钌、铑、钯、铱、铂、金)的含量。以标准加入法补偿基体效应制作标准曲线。在质谱分析中采用标准模式。7种元素的检出限(3s)在0.01~0.80μg·L^(-1)之间。按标准加入法进行回收试验,回收率在94.0%~105%之间,相对标准偏差(n=11)在0.70%~2.1%之间。按上述方法分析铜冶炼渣尾矿样品,结果与石墨炉原子吸收光谱法测定结果基本一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号