首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly ordered mesoporous three‐dimensional Ia3d silica (KIT‐6) with different pore diameters has been synthesized by using pluronic P123 as surfactant template and n‐butanol as cosolvent at different synthesis temperatures in a highly acidic medium. The materials were characterized by XRD and N2 adsorption. The synthesis temperature plays a significant role in controlling the pore diameter, surface area, and pore volume of the materials. The material prepared at 150 °C, KIT‐6‐150, has a large pore diameter (11.3 nm) and a high specific pore volume (1.53 cm3 g?1). We also demonstrate immobilization of lysozyme, which is a stable and hard protein, on KIT‐6 materials with different pore diameters. The amount of lysozyme adsorbed on large‐pore KIT‐6 is extremely large (57.2 μmol g?1) and is much higher than that observed for mesoporous silicas MCM‐41, SBA‐15, and KIT‐5, mesoporous carbons, and carbon nanocages. The effect of various parameters such as buffer concentration, adsorption temperature, concentration of the lysozyme, and the textural parameter of the adsorbent on the lysozyme adsorption capacity of KIT‐6 was studied. The amount adsorbed mainly depends on solution pH, ionic strength, adsorption temperature, and pore volume and pore diameter of the adsorbent. The mechanism of adsorption on KIT‐6 under different adsorption conditions is discussed. In addition, the structural stability of lysozyme molecules and the KIT‐6 adsorbent before and after adsorption were investigated by XRD, nitrogen adsorption, and FTIR spectroscopy.  相似文献   

2.
Measurements have been made of uptake of acetic acid and water from low-pH aqueous solution onto polymeric adsorbents and activated carbons. In additon to composite isotherms, isotherms were obtained for acetic acid and water individually by use of gas-chromatographic and Karl Fisher techniques for analyses of both bulk solution and the material taken up by the adsorbent. While capacities for acetic acid are determined by the surface area and the chemical nature of the adsorbent, selectivity is governed by the pore volume and the wetting and swelling tendencies of the sorbent, with the latter being particularly important for polymers. Activated carbons and pyrolyzed polymers give better selectivity than do common polymeric adsorbents.

Measurements of pore volume by immersion in various liquids were compared with pore volumes computed from nitrogen adsorption-desorption measurements and from mercury-intrusion porosimetry. The nitrogen adsorption-desorption results were interpreted to obtain micropore and mesopore volumes. The results from the different methods agree well, if allowance is made for lack of full wetting and for swelling tendencies. Higher selectivity for acetic acid over water is obtained for adsorbents having a large percentage of the pore volume as micropores.

Measurements of competitive adsorption of acetic acid and methyl ethyl ketone from aqueous solution onto different carbons and pyrolyzed polymers showed that a higher surface density of active hydrogen sites, as measured by reaction with LiAlH4, leads to an improved selectivity for the carboxylic acid.  相似文献   

3.
In this study, the effect of coal micropores on the adsorption properties, especially the Langmuir pressure (P L ), was investigated by testing 11 coal samples from Northern China. The adsorption of CO2 at 273 K was utilized to analyze the pore size distribution. The results of these coals show that micropore volume and micropore surface area are the major factors affecting the Langmuir volume (V L ) but have weaker effects on P L . Micropore filling theory considers that some smaller micropores with an obvious overlapping adsorption force cause volume filling adsorption. These micropores firstly reach saturated adsorption, controlling the adsorption volume at the low-pressure stage and thus have a great effect on P L . Four times the methane molecular diameter, 1.5 nm, was assumed as the critical pore size with obvious overlapping adsorption force. The relationship between P L and the proportion of the pore volume below 1.5 nm to the micropore volume was investigated, and it was found that the higher the volume proportion of these small micropores was, the smaller the P L was, though two data points deviated from this trend. The reason for the anomalous coal samples could be the deviation from the assumed critical pore size of 1.5 nm for volume filling and the effects of the various micropore surface properties, which await further study. The micropore surface increases with increasing coal rank, as does V L . The proportion of pore volume below 1.5 nm increases with coal rank, and P L reverses. However, these relationships are discrete.  相似文献   

4.
Morphological, structural and adsorption characteristics of nanooxides (fumed individual silica, alumina and titania, and composite silica/alumina, silica/titania and alumina/silica/titania) were compared after different treatments (wetting/drying, ball-milling, suspending/drying, heating) at different temperatures (373–1173 K) using low-temperature nitrogen adsorption data. The structural characteristics such as specific surface area (S BET), pore volume (V p), pore (PSD) and particle (PaSD) size distributions (calculated using self-consisting regularization procedure with respect to both PSD and PaSD), fractality, adsorption energy distributions depend differently on heating temperature because desorption of water molecularly and dissociatively adsorbed at a surface and in bulk of primary nanoparticles occurs over a wide temperature range at different rates. These processes affect both structural and energetic characteristics of nanooxides.  相似文献   

5.
铈锆固溶体的微波辅助法制备及表征   总被引:3,自引:1,他引:2  
采用共沉淀法并结合不同的老化处理方式(室温陈化、常规加热回流和微波辅助加热回流)制备了Ce0.6Zr0.4O2固溶体。利用SEM、N2吸附、XRD、Raman光谱和H2-TPR等技术对样品的形貌、比表面积、孔结构、晶相结构、高温热稳定性和还原性进行了表征,并考察了其对CO氧化反应的催化性能。结果表明,微波辅助加热回流老化处理所制备的固溶体属于立方萤石结构,颗粒的大小均匀,表面结构疏松,具有最大的比表面积和孔容、最高的热稳定性及最好的低温还原性。CO氧化实验表明微波辅助加热回流老化处理所制备的Ce0.6Zr0.4O2固溶体具有最好的催化氧化活性。  相似文献   

6.
The nanosized titania modification ??-TiO2 has been obtained from titanyl sulfate with different starting precursor concentration, under different hydrolysis and coagulation conditions. Characteristics of samples (nanoparticle and crystallite size, specific surface, pore volume) have been determined by scanning electron microscopy, small-angle and wide-angle X-ray diffraction, and nitrogen physical adsorption at ?196°C, and their correlation with the synthesis conditions has been established. Optimal technological regimes ensuring fabrication of samples with a high yield of ??-TiO2 modification and specified functional characteristics have been found.  相似文献   

7.
In order to quantitatively examine the activation level for covalent-organic frameworks (COFs) on gas adsorption, the effect of impurities on nitrogen uptakes in a series of boron-based COFs was investigated by grand canonical Monte Carlo simulation (GCMC), based on accurate force fields derived from high-level B2PLYP-D3/def2-TZVPP calculation. The conformations and the type of impurities were found to have little effect on the gas uptakes, but the quantity of impurities plays a crucial role on N2 loadings. More important, the terms of “activation mass ratio” and “activation volume ratio” were defined to estimate the realistic pore volume ratio for DBA-COFs (DBA=π-conjugated dehydro-benzoannulene), and predict the potential of gas uptakes in DBA-COFs. Our approach for DBA-COFs materials could also be adopted for high-throughput screening of a much vaster number of porous materials, to evaluate their impurities content and predict their adsorption potential.  相似文献   

8.
氮气在MCM-41分子筛中的吸附:实验和分子模拟   总被引:4,自引:0,他引:4  
用美国Micromeritics公司生产的ASAP2010物理吸附仪测定了低温(77 K) N_2在MCM-41分子筛中的吸附等温线,获得了表征MCM-41特征的BET比表面、BJH孔 容和平均孔径。同时用巨正则Monte Carlo(GCMC)模拟方法考究了N_2在MCM-41中 的吸附,得到了N_2在MCM-41中的模拟吸附等温线,分析了流体在MCM-41分子筛中 的微观结构。GCMC模拟中MCM-41介孔材料模型化为圆柱孔,N_2模型化为Lennard- Jones(LJ)球。N_2和MCM-41介孔墙壁间的相互作用采用Tjatjopoulos-Feke- Mann(TFM)势能模型进行表征。通过使模拟和实验结果有一个好的吻合,确定了 一组有效的MCM-41分子筛的势能参数(σ_(ww) = 0.265 nm,∈_(ww)/k = 190 K )。这为以后其他吸附质在MCM-41中吸附的预测奠定了基础、提供了依据。  相似文献   

9.
Nitrogen adsorption–desorption for mesopore characterization requires the using of expensive instrumentation, time‐consuming processes, and the consumption of liquid nitrogen. Herein, a new method is developed to measure the pore parameters through mixing a mesoporous substance with a supersaturated SiO2 colloidal solution at different temperatures, and subsequent rapid measurement of reflection changes of the precipitated liquid photonic crystals. The pore volumes and diameters of mesoporous silica were measured according to the positive correlation between unit mass reflection change (Δλ/m) and pore volume (V), and the negative correlation between average absorption temperature (T) and pore diameter (D). This new approach may provide an alternative method for fast, convenient and economical characterization of mesoporous materials.  相似文献   

10.
This paper studied the role of O‐containing groups over the coal surface in methane adsorption. The coal was modified with H2SO4, (NH4)2S2O8 or H2SO4/(NH4)2S2O8), respectively, to introduce O‐containing functional groups, and characterized by proximate analysis, ultimate analysis, Boehm titration, X‐ray photoelectron spectroscopy (XPS) and nitrogen adsorption. The results of ultimate analysis, Boehm titration and XPS indicate that there were increases in terms of both the content of oxygen and the quantities of O‐containing groups over the modified coals surface, especially for the carboxyl. Nitrogen adsorption shows that the modified coals possessed higher surface area and pore volume than that of 0‐XQ. The methane adsorption data were measured at 298 K at pressures up to 4.0 MPa by the volumetric method and fitted well by Langmuir model. Experimental results implied that O‐containing groups and pore structure affected methane adsorption. The adsorption capacities decreased as increasing quantities of O‐containing groups.  相似文献   

11.
This study attempted to improve the adsorption performance of calcined diatomite for the removal of colour from wastewaters through modification with microemulsions. The surface area, pHZPC, Fourier transform infrared (FTIR) of calcined diatomite and μE-CD were studied. It is found that an increase in the BET surface area, pHZPC and total pore volume after modification was obtained. A decrease in average pore volume was observed after modification. This suggests that the pore opening deceased to be in the micro- and meso-pore region hence the adsorption capacity for the modified adsorbent will be enhanced by reducing the escaping of dye molecules. The influence of concentration, pH and particle size on the adsorption capacities of methylene blue (MB), hydrolysed reactive black (RB) and hydrolysed reactive yellow (RY) was investigated. It was concluded from FTIR and pH analysis that the predominant mechanism of RY molecules onto μE-CD is by an electrostatic attraction between the carboxylate anion and the dye. In the case of MB and RB, the adsorption mechanism could be a combination of different mechanisms such as electrostatic attraction, capturing by microemulsion micelles in the pores of the calcined diatomite or the hydrophobic attraction. The adsorption capacities were higher than unmodified calcined diatomite. In the case of adsorption of MB molecules, a high adsorption capacity onto μE-CD was obtained.  相似文献   

12.
以二乙胺为结构导向剂, 在微波条件下合成了SAPO-34分子筛材料, 并分别在空气和氮气氛下1073 K焙烧. 考察了氮气氛下分子筛表面碳改性后对材料表面及水、甲醇和乙醇吸附性能的影响. 结果表明: 碳改性后SAPO-34比表面、孔容下降, 但孔径趋于均一. 与SAPO-34样品相比, 碳改性后SAPO-34吸水量从0.295 g/g降低到0.180 g/g, 甲醇/乙醇的吸附比从1.42提高到2.81.  相似文献   

13.
A set of different phenyl-modified HPLC adsorbents were characterized in terms of their surface area, pore volume, and bonded phase volume using low temperature nitrogen adsorption (LTNA). Adsorbents pore volume and interparticle volume were also measured using HPLC. Comparison of the pore volumes assessed with LTNA and HPLC suggests a compact molecular arrangement for all bonded phases studied. Simple and effective method for determination of the exact mass of adsorbent and total surface area in the column is suggested.  相似文献   

14.
采用巨正则系综的MonteCarlo方法(GCMC)模拟常温(T=303K)下,氮气和氧气在具有狭缝状膜孔的碳膜内的吸附.气体分子之间、气体分子与膜原子之间的相互作用均采用Shifted-Lennard-Jones势能模型.研究了303K和10MPa下,不同膜厚度和膜孔宽度时氧气在膜面和膜孔内的密度分布以及303K和压力从1MPa到10MPa变化时,氮气和氧气在狭缝膜孔内超额吸附等温线.实验结果表明,膜孔端口效应显著,膜厚和膜孔宽度对孔内吸附影响较大,而膜构型对膜面吸附影响显著.  相似文献   

15.
Using the density functional theory and molecular mechanics methods, we calculated the binding energy and parameters about the primitive cell designed by us with the adamantane and the nitrogen heterocyclic ring, the vibrational frequencies about the small complexes. Grand canonical Monte Carlo simulations were performed to predict the capacities for the hydrogen storage and adsorption isotherms. The results show the positive effects of bigger specific surface area and pore volume on hydrogen storage and isosteric heat. The gravimetric hydrogen uptake of adamantane‐based nitrogen‐heterocyclic ring of quaterpyridyl can reach 9.02 wt % at room temperature and 100 bar. But the volumetric H2 capacities of the four materials are low at T = 298 K because of weak interaction between the materials and H2 molecule. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
The variation of surface properties of SiMCM-41 and AlMCM-41 nanoporous materials as function of synthesis time was examined. The main properties studied were: surface area, pore diameter, pore volume, mesoporous parameter, and wall thickness. Siliceous MCM-41 molecular sieves were synthesized starting from hydrogels with the following molar compositions: 4.58SiO2:0.435Na2O:1 CTMABr:200 H2O for SiMCM-41, and 4.58SiO2:0.485 Na2O:1 CTMABr:0.038 Al2O3:200 H2O, for AlMCM-41. Cetyltrimethylammonium bromide (CTMABr) was used as the structural template. The crystallographic parameters were obtained from XRD data and by nitrogen adsorption using the BET and BJH methods. The results obtained showed a significant variation of the surface properties of the MCM-41 materials as a function of the synthesis time reaching silica wall thickness of ca. 2 nm on the fourth day.  相似文献   

17.
The mean values of the characteristic energy of C6H6 adsorption in large micropores were calculated from the adsorption isotherms of benzene vapor on carbon blacks. The supermicropores are characterized by the significant dispersion of the adsorption potential resulted from the pore-size distribution, which imparts the polymolecular character to adsorption. The effect of enhancement of the characteristic energy of adsorption was analyzed, which was caused by the overlap of the force fields of the opposite pore walls and the reduction of the adsorption film surface with micropore volume filling. The both factors are comparable by magnitude and depend on the micropore sizes.  相似文献   

18.
Effects of pore structure and surface chemical characteristics of titanate nanotubes (TNTs) on their adsorptive removal of organic vapors were investigated. TNTs were prepared via a hydrothermal treatment of TiO2 powders in a 10 M NaOH solution at 150?°C for 24?h, and subsequently washed with HCl aqueous solution of different concentrations. Effects of acid washing process (or the sodium content) on the microstructures and surface chemical characteristics of TNTs were characterized with nitrogen adsorption-desorption isotherms, FTIR, and water vapor adsorption isotherms. For the adsorption experiments, gravimetric techniques were employed to determine the adsorption capacities of TNTs for four organic vapors with similar heats of vaporization (i.e., comparable heats of adsorption) but varying dipole moments and structures, including n-hexane, cyclohexane, toluene, and methyl ethyl ketone (MEK), at isothermal conditions of 20 and 25?°C. The experimental data were correlated by well-known vapor phase models including BET and GAB models. Isosteric heats of adsorption were calculated and heat curves were established. Equilibrium isotherms of organic vapors on TNTs were type II, characterizing vapor condensation to form multilayers. The specific surface area (and pore volume) and hydrophilicity of TNTs were the dominating factors for the determination of their organic vapors adsorption capacity. The GAB isotherm equation fitted the experimental data more closely than the BET equation. The heats of adsorption showed that the adsorption of organic vapors on TNTs was primarily due to physical forces and adsorbates with larger polarity might induce a stronger interaction with TNTs.  相似文献   

19.
This work deals with examining the performance of xerogel-based activated carbons (XACs), which were synthesized from aliphatic aldehydes of different carbon chain lengths. These XACs were compared with those synthesized from commonly synthesized XACs. The performance of the new xerogels was determined by examining the thermo-gravimetric analysis (TGA) and Fourier transform infrared (FTIR); however, the XACs were studied using infrared spectra (IR), scanning electron microscopy (SEM), and their adsorption capacities in gas and aqueous media (nitrogen adsorption, iodine number, adsorption of phenol and methylene blue, MB). The adsorption behavior of these investigated XACs to MB was studied in detail, using the Langmuir and Freundlich adsorption equations, in addition to kinetic (Lagergren first-order and pseudo-second-order) and thermodynamic models. The results show that long -chain aldehydes have a significant effect on increasing the total pore volume (VT). Glutaraldehyde-based carbon xerogel is recommended as an economically superior adsorbent with an SBET x yield of 571.9 m2/g. XACs from glutaraldehyde and propionaldehyde have higher surface area than commonly synthesized ACs from formaldehyde (F), Phenol/F, Tanin/F-, Polybenzooxazine/F, and Pyrogallol/F. The best models used for MB adsorption onto XACs are Langmuir and pseudo-second-order kinetic equations. The negative values of thermodynamic parameter ΔGº and positive values of ΔHº indicate the MB adsorption process is spontaneous and endothermic.  相似文献   

20.
Rice straw is a common agricultural waste. In order to increase the added value of rice straw and improve the performance of rice straw biochar. MgO-modified biochar (MRBC) was prepared from rice straw at different temperatures, pyrolysis time and MgCl2 concentrations. The microstructure, chemical and crystal structure were studied using X-ray diffraction (XRD), a Scanning Electron Microscope (SEM), Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption desorption isotherms and Elementary Analysis (EA). The results showed that the pyrolysis temperature had significant influence on the structure and physicochemical property of MRBCs. MRBC-2 h has the richest microporous structure while MRBC-2 m has the richest mesoporous structure. The specific surface area (from 9.663 to 250.66 m2/g) and pore volume (from 0.042 to 0.158 cm3/g) of MRBCs increased as temperature rose from 300 to 600 °C. However, it was observed MgCl2 concentrations and pyrolysis time had no significant influence on pore structure of MRBCs. As pyrolysis temperature increased, pH increased and more oxygen-containing functional groups and mineral salts were formed, while MgO-modified yield, volatile matter, total content of hydrogen, oxygen, nitrogen, porosity and average pore diameter decreased. In addition, MRBCs formed at high temperature showed high C content with a low O/C and H/C ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号