首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
马将  杨灿  龚峰  伍晓宇  梁雄 《物理学报》2017,66(17):176404-176404
金属玻璃在其过冷液相区内表现出随着温度升高黏度逐渐降低的特性,因此可以对其进行热塑性加工.该性质颠覆了传统金属的加工成型方式,使得其在远低于传统金属材料加工的温度和应力作用下可以按照人们的要求进行成型.因此,一些具有低玻璃转变温度的金属玻璃又被称作金属塑料.另外,由于金属玻璃是一种无序结构材料,不存在位错、晶界等晶体缺陷,且热膨胀系数小,在热塑性成型中具有优异的尺寸精度,因此被认为是理想的微成型材料,有广阔的应用前景.本文系统介绍了金属玻璃的热塑性成型性质及其应用,从热塑性成型的基本概念出发,阐述了金属玻璃热塑性成型能力的评估指标、热塑性成型技术、热塑性微成型及其理论、热塑性微成型的应用等,对认识金属玻璃的热塑性及扩展其应用有重要的意义.  相似文献   

2.
李强  李五明 《物理学报》2016,65(6):64601-064601
基于充模过程的两相黏弹性流体模型, 采用同位网格有限体积法, 结合浸入边界法和界面追踪的复合水平集流体体积方法实现了带嵌件型腔内充模过程的动态模拟. 基于上述模型和算法模拟了熔体前沿界面及熔接线的动态演化过程, 而且通过线性应力-光学定律得到了熔接线附近的流动诱导应力分布情况; 讨论了熔体温度及模具温度对熔接线区域凝固层厚度的影响. 数值结果表明: 本文提出的方法可用于模拟复杂型腔内的充模过程以及熔接线的自动追踪; 由于聚合物黏弹性熔体流动的复杂性, 当两股熔体相遇后, 熔接线不同位置的应力分布变化较大; 熔体或模具温度越高, 熔接线区域凝固层厚度越薄, 提高熔体或模具温度能够改善甚至消除充模过程中的熔接线.  相似文献   

3.
This paper discusses an innovative and effective ultrasonic embossing process, which enables the rapid fabrication of surface-relief plastic diffusers. The metallic mold bearing the microstructures is fabricated using a tungsten carbide turning machine. A 1500-W ultrasonic vibrator with an output frequency of 20 kHz was used to replicate the microstructure onto 1-mm-thick PMMA plates in the experiments. During ultrasonic embossing, the ultrasonic energy is converted into heat through intermolecular friction at the master mold/plastic plate interface due to asperities to melt the thermoplastic at the interface and thereby to replicate the microstructure. Under the proper processing conditions, high-performance plastic diffusers have been successfully fabricated. The cycle time required to successfully fabricate a diffuser is less than 2 s. The experimental results suggest that ultrasonic embossing could provide an effective way of fabricating high-performance plastic diffusers with a high throughput.  相似文献   

4.
A new method for simple and economic fabrication of diffractive optical elements (DOEs) with three and four phase levels, by UV nanosecond (ns) laser ablation is presented. The technique is based on the combination of two sequentially generated complementary 2-level phase elements. During the fabrication, complete ablative removal of a highly absorbing silicon suboxide layer by pixelated backside illumination ensures the necessary high precision and optical quality. Full functionality of the new DOEs is demonstrated by fabricating micro-structures using UV femtosecond pulses.  相似文献   

5.
When silicone diacrylate was added in small amount (<5 wt.%) to ultraviolet (UV) curable formulations containing other oligomeric diacrylates, there was segregation of the silicone additive at the solid substrate-formulation interface. The amount was quantified by X-ray photoelectron spectroscopy measurement of the UV cured film surface composition. The effect of silicone diacrylate concentration, resin formulation and substrate polarity on silicone surface excess was systematically studied. Young's-Gibbs adsorption theory was applied to the prediction of the silicone surface excess at the solid substrate interface for these oligomeric mixtures. Further, we proposed a simplified Young's-Gibbs adsorption theory equation to predict the variation of surface excess from only formulation surface tension and substrate critical surface tension. The selective segregation is beneficial to demolding in UV embossing since only small amount of release added can result in large decrease of the mold-resin interfacial energy difference leading to easy demolding and high replication fidelity.  相似文献   

6.
We describe the fabrication of silicon micro-hemispheres by adopting the conventional laser ablation of single crystalline silicon in the vacuum condition without using any catalysts or additives. The highly oriented structures of silicon micro-hemispheres exhibit many periodic nanoscale rings along their outer surfaces. We consider that the self-organized growth of silicon micro-structures is highly dependent on the laser intensity and background air medium. The difference between these surface modifications is attributed to the amount of laser energy deposited in the silicon material and the consequent cooling velocity.  相似文献   

7.
Epitaxial graphene is synthesized by silicon sublimation from the Si-terminated 6H–SiC substrate. The effects of graphitization temperature on the thickness and surface morphology of epitaxial graphene are investigated. X-ray photoelectron spectroscopy spectra and atomic force microscopy images reveal that the epitaxial graphene thickness increases and the epitaxial graphene roughness decreases with the increase in graphitization temperature. This means that the thickness and roughness of epitaxial graphene films can be modulated by varying the graphitization temperature. In addition, the electrical properties of epitaxial graphene film are also investigated by Hall effect measurement.  相似文献   

8.
程宏昌  石峰  冯刘  刘晖  史鹏飞 《应用光学》2008,29(4):557-561
为解决透射式Cs2Te光阴极厚度不均匀问题,通过理论和实验研究,分析了产生此问题的机理及其影响因素。这些因素包括:蒸发源发生器形状及其与阴极基底之间的相对位置;Cs/Te原子在阴极基底表面上完成化学反应所需的结合能以及制作阴极前基底表面所能达到的温度均匀性水平等。实验证明,上述最后一个因素是影响Cs2Te光阴极厚度不均匀的主要原因。通过改变加温程序,优化保温时间,均衡阴极基底与阴极托盘温度梯度等途径,使得制作的透射式Cs2Te光阴极厚度不均匀性由原来的76.4%,改善为<10%。  相似文献   

9.
彭英才  范志东  白振华  马蕾 《物理学报》2010,59(2):1169-1174
以Au膜作为金属催化剂,直接从n-(111)Si单晶衬底上制备了直径为30—60nm和长度从几微米到几十微米的高质量Si纳米线.实验研究了Au膜层厚、退火温度、N2气流量和生长时间对Si纳米线形成的影响.结果表明,通过合理选择和优化组合上述各种工艺条件,可以实现直径、长度、形状和取向可控的纳米线生长.基于固-液-固生长机理,定性阐述了Si纳米线的形成过程.  相似文献   

10.
The effect of laser radiation power on the Raman spectra of amorphous silicon obtained by electron-beam evaporation has been revealed. The formation of nanocrystalline inclusions in the amorphous matrix under exposure to a laser with a power of more than 2.5 mW is established by Raman spectroscopy and photoluminescence. The influence of the fabrication conditions (substrate temperature and annealing in a vacuum) of source amorphous silicon films on the formation of nanocrystalline inclusions formed by subsequent laser treatment has been investigated. The features of silicon nanocrystal formation in cases when the original amorphous silicon film is obtained at a substrate temperature of ∼250°C have been revealed. These features may be associated with the presence of silicon-silicon multiple bonds.  相似文献   

11.
For the requirement of higher storage capacity of an optical disk, it is a good choice to shorten pit length and linewidth. However, the conventional laser beam mastering is difficult to fabricate smaller pit length and linewidth because of the optical diffraction limit. In order to solve this problem, optical disk mastering using electron beam lithography is presented. The process parameters of the electron beam mastering such as beam current, constant linear stage velocity, developing time, and focus distance are discussed in this research. In the experiments, it was found that the focus distance is an important parameter to fabricate nano-linewidth. The experimental results reveal that the 10 μm variance in focus distance causes about 12% variation in linewidth. The photoresist with nano-pattern defined by eletron beam was transferred into metal Ni–Co (Nickel–Cobalt) mold by electroplating process. The Ni–Co mold with hardness larger than Vicker Hardness (Hv) 650 was developed. Then, with the Ni–Co mold, LIGA (German: Lithographie GaVanoformung Abformung) process was applied to replicate high-density optical disk. The Ni–Co mold is served as a master for hot embossing process to transfer the nano-pattern onto PMMA sheet. Since the feature size is in nano-meter range, the study presents an innovative demolding mechanism to demold the master from the PMMA sheet without damaging the nano-meter structure. A spiral nano-groove with 112 nm in linewidth and 80 nm in depth has been successfully fabricated about 50 Gbytes storage capacity.  相似文献   

12.
A photo-chemical vapor deposition, using ultraviolet light excitation and a mercury photo-sensitization, was investigated for depositing hydrogenated amorphous silicon films from SiH4. The photoelectric and structural properties were examined to characterize the deposited films. Those properties were depended strongly on substrate temperature, and the films which were deposited at a substrate temperature more than 200°C contained dominant SiH configurations. A relatively large single crystalline grain size of about 0.5 m was observed in a 1.0 m thick film, which was obtained at a substrate temperature as low as 200°C. Phosphorus impurity doping into the films and Pt-Schottky diode fabrication were also attempted.  相似文献   

13.
姜礼华  曾祥斌  张笑 《物理学报》2012,61(1):16803-016803
采用等离子增强化学气相沉积法, 以氨气和硅烷为反应气体, p型单晶硅为衬底, 低温下(200 ℃)制备了非化学计量比氮化硅(SiNx)薄膜. 在N2氛围中, 于500–1100 ℃范围内对薄膜进行热退火处理. 室温下分别使用Fourier变换红外吸收(FTIR)光谱技术和X射线光电子能谱(XPS)技术测量未退火以及退火处理后SiNx薄膜的Si–N, Si–H, N–H键键合结构和Si 2p, N 1s电子结合能以及薄膜内N和Si原子含量比值R的变化. 详细讨论了不同温度退火处理下SiNx薄膜的FTIR和XPS光谱演化同薄膜内Si, N, H原子间键合方式变化之间的关系. 通过分析FTIR和XPS光谱发现退火温度低于800 ℃时, SiNx薄膜内Si–H和N–H键断裂后主要形成Si–N键; 当退火温度高于800 ℃时薄膜内Si–H和N–H键断裂利于N元素逸出和Si纳米粒子的形成; 当退火温度达到1100 ℃时N2与SiNx薄膜产生化学反应导致薄膜内N和Si原子含量比值R增加. 这些结果有助于控制高温下SiNx薄膜可能产生的化学反应和优化SiNx薄膜内的Si纳米粒子制备参数. 关键词: x薄膜')" href="#">SiNx薄膜 Fourier变换红外吸收光谱 X射线光电子能谱 键合结构  相似文献   

14.
This paper examines two fabrication techniques (soft lithography and UV embossing) employed in the replication of various structures at the micron and single nanometer regimes. Stretched and assembled forms of double stranded (ds) DNA (16-3 μm in length) were adsorbed on coated silicon oxide. The collective results show that the resolution of all the thermally cured polymers improves significantly when the processing time between the stamp and the template is increased with s-PDMS demonstrating a lateral resolution of <10nm.  相似文献   

15.
In this paper intrinsic microcrystalline silicon films have been prepared by very high frequency plasma enhanced chemical vapour deposition (VHF-PECVD) with different substrate temperature and pressure. The film properties were investigated by using Raman spectra, x-ray diffraction, scanning electron microscope (SEM), and optical transmittance measurements, as well as dark conductivity. Raman results indicate that increase of substrate temperature improves the microcrystallinity of the film. The crystallinity is improved when the pressure increases from 50Pa to 80Pa and the structure transits from microcrystalline to amorphous silicon for pressure higher than 80Pa. SEM reveals the effect of substrate temperature and pressure on surface morphology.  相似文献   

16.
A simple low-cost method of fabricating polymeric optical waveguides with large core sizes for plastic optical fibers is presented. The waveguides are fabricated by hot embossing with an ultraviolet-cured epoxy resin stamper. The stamper is fabricated by replication of a rectangular groove mold that is made from silicone rubber replicated from a ridged original silicon master. The master is fabricated by anisotropic etching of (110) single-crystal silicon. Optical waveguides with large core sizes of 100-500 microm have been fabricated, and a low propagation loss of 0.19 dB/cm at 650 nm was achieved.  相似文献   

17.
In thermal nanoimprint lithography, temperature is one of the most important process parameters. Temperature is not only important for the flow of resist during molding but also for demolding, the process by which the imprint stamp is removed from the molded resist/substrate. This is because thermal stress and friction and adhesion forces generated at the stamp/resist interface and the mechanical strength of the resist are all dependent on temperature. In this paper, we demonstrate via both experimentation and numerical simulation that an optimal temperature (T d) leading to minimal deformation of molded resist exists for demolding. The ease of demolding was directly accessed by measuring demolding force at different T d for a Si stamp/PMMA/Si substrate system of 4-in.-diameter using a mechanical tester. Numerically, the demolding process for a simple two-dimensional model of a Si stamp/poly(methyl methacrylate) (PMMA) resist/Si substrate system was simulated using a finite-element method for different T d, assuming viscoelasticity of the PMMA resist and temperature dependence of friction coefficients at the stamp/PMMA interface. We found that a temperature leading to the minimum in both the demolding force and the normalized stress vs. T d curves exists below the glass transition temperature of the PMMA resist, from which the optimal T d was derived.  相似文献   

18.
In this study, we report on the trench-template assisted fabrication of nanowires for thermally evaporated indium and silicon thin films on quartz substrate. Length of the nanowires is completely dependent on the length of the trench, whereas the diameter of the nanowires is dependent on the thickness of the thin film. The diameter of nanowire increases from 200 nm to 1 μm when the thickness was increased from 15 to 60 nm. It is observed that nanowires diameter is invariably controlled by material deposition thickness. Average crystallite sizes for 60 nm indium and silicon deposition inside the trench are 120 and 35 nm, respectively. Nanowire surface plasmon peak shift as compared to the same thickness untemplated continuous thin film is more for thinner nanowires. This technique of nanowire fabrication is shown to be versatile in nature.  相似文献   

19.
The complete wetting of an uncoated silicon wafer covered with a native oxide layer by saturated vapour of carbon tetrachloride was studied by using the x-ray reflectivity-technique. Differential heating of the substrate relative to a liquid reservoir was used to examine the disjoining pressure as a function of film thickness. The measurements were done at the temperaturesT=308K andT=318K of the reservoir. The observed film thicknesses varied between 26Å and 345Å depending on the temperature difference. A model for explaining the measured film thickness as a function of the temperature difference in terms of van der Waals forces is presented. It is based on the non-retarded interaction and includes terms of higher order in the film thickness. Microscopic constants like the Hamaker constant were determined and compared with reported values.  相似文献   

20.
Nanowires of various inorganic materials have been fabricated due to the realization of their applications in different fields. Large-area and uniform cupric oxide (CuO) nanowires were successfully synthesized by a very simple thermal oxidation of copper thin films. The copper films were deposited by electron beam evaporation onto Ti/Si substrates, in which Ti film was first deposited on silicon substrate to serve as adhesion layer. The structure characterization revealed that these nanowires are monoclinic structured single crystallites. The effects of different growth parameters, namely, annealing time, annealing temperature, and film thickness on the fabrication of the CuO nanowires were investigated by scanning electron microscopy. A typical procedure simply involved the thermal oxidation of these substrates in air and within the temperature range from 300 to 700 °C. It is found that nanowires can only be formed at thermal temperature of 400 °C. It is observed that the growth time has an important effect on the length and density of the CuO nanowires, whereas the average diameter is almost the same, i.e.50 nm. Different from the vapor-liquid-solid (VLS) and vapor-solid (VS) mechanism, the growth of nanowires is found to be based on the accumulation and relaxation of the stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号