首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative measurements have been made of optical absorption and photoluminescence of refined undoped and Cu in-diffused ZnTe single crystals. Strong increases in a bound exciton BE line near 2.375 eV previously identified with the electrically dominant point defect acceptor ‘a’, with binding energy EA ? 149 meV, suggests that this acceptor is substitutional CuZn. Similarly strong increases in a relatively broad band at slightly higher energy suggests the simultaneous incorporation of shallow donors, possibly interstital CuI. These findings indicate that intrinsic defects such as VZn neither control the Fermi level in refined ZnTe nor produce shallow acceptors with EA ? 250 meV, contrary to much previous speculation.  相似文献   

2.
Uniaxial stress experiments were used to investigate the nature of the luminescence lines observed at low temperatures in ZnTe in the vicinity of the absorption edge. The single crystals used in this experiment were grown from solution of ZnTe in tellurium. Both “as-grown” crystals and crystals annealed in Zn vapour were investigated. The most intense line in “as-grown” crystals is attributed to an exciton bound to a neutral acceptor. The binding energy of the exciton in this center is 6 meV. After annealing a new center appears in the same spectral region. Stress experiments as well as the temperature dependence of the intensity of the luminescence indicate that this center is a complex consisting of an exciton and an ionized donor. Splitting of J = 1 (Γ5) and J = 2 (Γ3 + Γ4) levels was found to be 1.2 meV.  相似文献   

3.
Blue and violet photoluminescences of Ga-doped and Al-doped 4H-SiC single crystals grown from a Si melt have been studied at 2 ~ 200 K. Luminescence spectra under continuous excitation and their dependences on temperature and excitation intensity as well as temperature dependence of the luminescence intensity are measured. Time-resolved spectra and decay curves after pulsed excitation also are observed at various temperatures. The luminescences at 2 K are found to be due to pair recombination between the N donor introduced unintentionally and the Ga or Al acceptor. The spectra of the two samples resemble each other in shape, and each consists of a zero-phonon peak and its phonon replicas. At higher temperatures, another emission appears due to the recombination of free electrons with bound holes at the acceptors in place of the pair emission. From the energies of the zero-phonon peaks of these two kinds of emissions, the ionization energies of the Ga and the Al acceptors are determined to be 249 ± 3meV+Ex and 168 ± 3 meV + Ex, respectively, where Ex is the exciton binding energy of 4H-SiC, and that of the N donor is estimated to be 55 ± 7 me V using an appropriate approximation.  相似文献   

4.
Shallow impurity–defect states in undoped Cd1–xZnxTe (x ~ 3–6%) single crystals have been studied using low-temperature photoluminescence measurements. It has been found that the effect exerted by zinc is mainly reduced to a rigid shift of all the specific features associated with the exciton radiation, which made it possible, with a high (~0.3 meV) accuracy, to measure the band gap and the zinc concentration in solid solutions. Hydrogen-like donors with the ground-state energy of ~14 meV and four types of acceptors with average activation energies of 59.3 ± 0.6 meV, 69.6 ± 1.5 meV, 155.8 ± 2.0 meV, and 52.3 ± 0.6 meV have been identified in all the crystals studied. Based on a comparison with the results of the analysis of the impurity background and the data available in the literature on impurity–defect emission in undoped CdTe, the first three acceptors can be assigned to the substitutional impurities NaCd, PTe, and CuCd, respectively. The most shallow acceptor (52.3 ± 0.6 meV) is a complex defect in which there is a nonstandard excited level separated by only 7 meV from the ground level. This level is formed apparently due to the removal of degeneracy, which is characteristic of TD acceptors, by the low-symmetry potential of the complex defect.  相似文献   

5.
Photoexcitation spectroscopy has been used to study the excited states of the neutral c-acceptor bound exciton complex Ac1 in ZnTe. We have detected four excited states at ~ 11.2 meV above the bound exciton ground state. Zeeman effects on these excited states have also been studied. The results show that they correspond to excitations of the bound electron to donor-like 2p and 2s orbital states. This represents an unambiguous experimental evidence of the pseudo-donor model previously suggested by Rühle and Bimberg for acceptor bound exciton complexes when me ? mh.  相似文献   

6.
Photoluminescence attributed to excitons bound to neutral impurities has been observed from GaAs quantum wells in AlxGa1?xAs-GaAs heterostructures grown by molecular beam epitaxy. The quantum wells were either doped with [Be] ≈ 1017 cm-3 or Zn-diffused. At low temperatures both single and multiple quantum wells exhibited this extrinsic luminescence which is ascribed to the radiative recombination of the n=1 ground state heavy hole exciton E1h bound to a neutral acceptor Ao. The dissociation energy ED of the Ao-E1h complex is obtained directly from the measured separation of this extrinsic peak from the intrinsic E1h free exciton peak. For 46Å wide GaAs wells, ED=6.5meV and ED decreases with increasing well width.  相似文献   

7.
We investigated excitons bound to shallow acceptors in high-purity ZnTe and measured excitation spectra of two-hole luminescence lines at 1.6 K using a tunable dye-laser. The electron-hole coupling in the bound exciton (BE) states appears to be very different for the various acceptors even for almost identical exciton localisation energies. Three different types of BE are reported. For the Li-acceptor BE we observe three sub-components separated by 0.22 and 0.17 meV and interpreted as J = 12, 32, 52 states. The Ag-acceptor BE exhibits a strong ground state and a weak excited state at 1.3 meV higher energy. For the as yet unidentified k-acceptor we observe a single BE level, degenerate with the Ag-acceptor BE ground state. Dips in the excitation spectra due to absorption into free exciton 1S, 2S, and 3S states yield an exciton Rydberg R0 = 12.8±0.3 meV and a free exciton binding energy FE(1S) = 13.2±0.3 meV.  相似文献   

8.
The node in the Bloch part of the electron wave function expected for a Ga-site donor in GaP removes the usual valley-orbit splitting and associated chemical shift. However, the T2 ground state can still show a small spin-valley splitting into Γ8 and Γ7 states, as previously verified for the Sn donor. We find that the optical properties of the Ge and Si donors deviate appreciably from this “normal” behaviour. The Ge donor is anomalously deep, ED ~ 202 meV, yet binds an exciton by ~63 meV consistent with the Haynes rule for neutral donors in GaP. We find that this exciton possesses the large oscillator strength, f~3.5 × 10-3, Zeeman and piezo-optical splittings characteristic of a Γ6, 1s(A1) ground state, like a P rather than Ga-site donor. However, f and the exciton localization energy are consistent with expectation for ED ~ 200 meV, as measured from the lowest set of X conduction band minima, if we assume a symmetric A1-like wave function. A possible explanation for this unexpected result is advanced. The much shallower Si donor, ED~82 meV, binds an exciton by only ~ 14 meV, also consistent with the Haynes rule. By contrast, we find this Ga-site donor to be normal except that our Zeeman and piezo-optical results indicate an inverted spin-valley splitting, about 25% of that for the still shallower Sn donor. We also discuss the numerous low-lying excited states, some anomalous phonon replicas in the Ge and Si donor bound exciton spectra and the magneto-optical properties of a sharp line near 2.24 eV, attributed to the decay of excitons bound to (S)p-(Ge)p donor-acceptor associates.  相似文献   

9.
Samples of ZnTe showing near gap edge luminescence predominantly due to exciton recombination at shallow neutral acceptors and donor- acceptor pair recombination have been investigated using optically detected magnetic resonance (ODMR). Emission polarization changes at 2.318 eV were observed due to magnetic resonance of electrons at ge = + 0.401 ± 0.004. The observations are consistent with the donor trapped electron resonance resulting from microwave induced changes in donor-acceptor pair photoluminescence.  相似文献   

10.
Interest in the Ga-site acceptors Be and Mg was stimulated by the possibility that they might produce efficient luminescence on association with O, analogous to the well-known red Zn-O luminescence in GaP but at higher transition energy. Attention was directed to diffusion doping by Be and Mg of GaP O-doped during growth because the reactivity of Be and Mg with O renders double doping during crystal growth very difficult. Structured green donor-acceptor pair spectra were observed at 1.6°K from many Be-diffused crystals, yielding an accurate measure of (EA)BE, 50 ± 1 meV. Moderately efficient orange-red luminescence was also observed below ∼ 100 °K from these crystals, but the intensity of this luminescence decreased rapidly to negligible levels by ∼ 200°K. This luminescence also contains sharp structure at 1.6°K, of a form characteristic of the decay of excitons bound to complex centres. Many sharp phonon replicas occur, involving local modes as well as characteristic GaP modes. One set of no-phonon lines, at least, near 2.19 eV, shows zero-field splitting, luminescence decay times and behaviour in magnetic and external strain fields characteristic of exciton decay at a centre with <100>; or <111>-type symmetry axes, containing no extra electronic particles. The exciton state is split by 2.4 meV by J-J coupling, and the axial field of the centre splits the hole states by ∼ 1.0 meV. These bound excitons are specifically characteristics of diffused GaP and appear analogous to bound excitons observed below 2.12 eV in Zn-diffused GaP. It is probable that the relevant centres contain diffusion components such as Be or Zn interstitials and improbable that OP is involved. By contrast, weak orange bound exciton luminescence observed in Mg-diffused GaP does involve O, presumably as OP. No analysis of the magneto-optical behaviour of this Mg-related bound exciton was possible in our crystals, so its symmetry axis was not established. It is possible that this is the MgGa-OP bound exciton. If so, the two-fold reductions in the exciton localisation energy from ∼ 0.32 eV to ∼ 0.15 eV and in the mass of the Ga-site substituent has produced dramatic changes in the form of the phonon cooperation between the Zn-O and “Mg-O” excitons. The “Mg-O” exciton luminescence is not dominant in our crystals, even at low temperature. The exciton state is again split by a local crystal field as well as by J-J coupling, but here the former splitting is predominant; 2∈0 = 3.9 meV, Δ = 0.60 meV.  相似文献   

11.
Uniform and flat single crystal ZnO:P nanobelts (NBs) were fabricated on Si (1 0 0) substrates by the thermal evaporation method. The growth process, free-catalyst self-assembly vapor-solid (V-S) mechanism, was described and investigated deeply in terms of thermodynamics and kinetics. Then, the photoluminescence (PL) properties of ZnO NBs were studied in a temperature range from 10 to 270 K. At 10 K the recombination of acceptor-bound exciton (A0X) was predominant in the PL spectrum, and was attributed to the transition of PZn−2VZn complex bound exciton. The active energy of A0X and acceptor binding energy were calculated to be 17.2 and 172 meV, respectively. The calculated acceptor binding energy of P doped ZnO nanostructure is in good agreement with that of P doped ZnO film.  相似文献   

12.
Photoluminescence spectra in heat-treated CdTe : P and undoped CdTe were studied at temperatures of 4.2–77 K in the edge emission and the exciton emission region. Temperature dependences and excitation intensity dependences were measured, and the recombination mechanism of each emission line was identified. A change in recombination centers with pCd was studied. In a heavily doped crystal an acceptor A2 (66 meV) was dominant at low pCd and the phosphorus acceptor (78 meV) at high pCd. A rather deep donor (about 35 meV) was also observed. In a lightly doped crystal the spectra were intermediate between those of the undoped and the heavily doped crystas, and the emission line due to the phosphorus acceptor was not observed. In an undoped crystal an acceptor A1 (52 meV) was dominat at low pCd and the A2 acceptor at medium and high pCd.  相似文献   

13.
The I4 bound exciton at 2.315 eV in ZnTe is resolved into a quartet at fields from 40 – 148 kG. The field dependence of this quartet is qualitatively different from that of other exciton complexes in ZnTe. I4 is assigned as due to ionized, substitutional Li acceptors at Zn sites.  相似文献   

14.
The influence of sodium impurity on photoluminescence (PL) spectra of ZnSe crystals doped in a growth process from a Se+Na melt is investigated. It is shown that the introduction of the impurity results in emergence of emission bands in the PL spectra due to the recombination of exciton impurity complexes associated with both donors and hydrogen-like acceptors. Apart from that, four bands generated by donor-acceptor pairs recombination and a band produced by electronic transitions from the conduction band to a shallow acceptor are discussed. As a result of the analysis it is concluded that Na impurity forms in ZnSe lattice NaZn hydrogen-like acceptors with activation energy of 105±3 meV, Nai donor centers with activation energy of 18±3 meV, as well as NaZnVSe and NaiNaZn associative donors with activation energy of 35±3 and 52±9 meV, respectively.  相似文献   

15.
The photoluminescence spectra of CuI single crystals have been studied at T = 4.2 K and at various excitation levels. The emission band of donor-acceptor pairs (DAP) with a maximum at about 4200 Å has been shown to possess a complex structure. Theoretical analyses and exciton spectroscopy data make it possible to calculate the ionization energies for the donors and acceptors participating in the formation of DAP, which are equal to ED = = 0.045?0.065 eV and EA = 0.155?0.170 eV, respectively. The fine structure of emission due to the annihilation of excitons bound on acceptor pairs (band maximum 4075 Å) has been detected and calculated. The energy of the longitudinal optical phonon participating in the exciton-phonon interaction (LO ? 18.7 meV) has been determined.  相似文献   

16.
Excitation of donor-acceptor pair luminescence has been studied in CdTe doped with lithium or chlorine. The excitation spectrum of the lithium acceptor is determined and fitted with the effective mass theory of Baldereschi and Lipari. Revised values of the valence band parameters are deduced: μ = 0.8, δ = 0.054, Ry = 24 meV. The analysis of the 1.45 eV luminescence band in compensated Cl-doped crystals shows the existence of donor-acceptor pair transitions. Three acceptor centers are identified: EA = 89, 111 and 119 meV, and the contribution of a deep donor (ED > 40 meV) is demonstrated. Besides intracentre type excitation transitions of the 1.45 eV band have been observed in non-compensated chlorine-doped crystals. Thus several recombination channels and distinct acceptor states contribute to the composite 1.45 eV luminescence band.  相似文献   

17.
Two weak satellite series with acceptor-independent displacement energies of 4.23 meV and 7.83 meV have been observed in the luminescence of excitons bound to neutral acceptors in GaP. These satellites contain broad background luminescence. Rather well defined superimposed peaks show relative strength which increases dramatically with decrease in exciton binding energy. The most plausible mechanism for these satellites involves bound exciton recombination with emission of one phonon to conserve momentum in the indirect transition and one or two further phonons to conserve momentum in g-type inter-valley scattering processes. This model is consistent with all known properties of the satellites and is strongly supported by a quantum-mechanical line width calculation. The narrow components arise from a diffuse tail on the bound exciton wave-function which is enhanced by the electron-hole correlation. The existence of this g-scattering process shows that the conduction band minima in GaP lie at 0.953 Kmax〈100〉, not exactly at Kmax〈100〉 as believed hitherto. This revision has important consequences for several properties of n-type GaP.  相似文献   

18.
We report here on the identification of the two dominant acceptor levels in high purity p type CdTe, with Cu and Ag on Cd site. This identification is based on back doping experiments coupled with electrical measurements and photoluminescence studies. Cu and Ag can form easily complex centers when a supersaturation is achieved. The way of obtained good doping without complexation, is explained. The principal bound exciton lines are at 1,5896 eV (Cu) and at 1,5885 eV (Ag). The precise hole binding energies obtained from optical data are EA (Cu) = 146 meV and EA (Ag) = 108 meV.  相似文献   

19.
High purity p-type Cdte crystals have been implanted with N+, P+ and As++ ions. After appropriate low temperature annealing, samples have been studied with high resolution photoluminescence technique, and with a tunable dye laser as the excitation source. A chemical doping effect by the acceptors N, P and As on tellurium site, has been evidenced. The bound exciton lines, the two-hole transitions, the donor acceptor pairs bands and the free electron-neutral acceptor transitions have been identified for the first time. The ground state of the acceptors N, P and As are respectively at 56.0 meV, 68.2 meV and 92.0 meV from the valence band.  相似文献   

20.
对不同Sb掺杂浓度Hg1-xCdxTe(x≈0.38)样品在3.9—115K的温度范围内进行了光致发光实验测量,观察到与局域激子、带到带和施主受主对有关的辐射复合过程.并用光致发光手段发现Sb掺杂在x≈0.38的Hg1-xCdxTe中引入的约30meV的受主能级 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号