首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The optical properties of Be,Mg and Zn-diffused gallium phosphide
Authors:PJ Dean  M Ilegems
Institution:Bell Telephone Laboratories, Murray Hill, New Jersey 07974, U.S.A.
Abstract:Interest in the Ga-site acceptors Be and Mg was stimulated by the possibility that they might produce efficient luminescence on association with O, analogous to the well-known red Zn-O luminescence in GaP but at higher transition energy. Attention was directed to diffusion doping by Be and Mg of GaP O-doped during growth because the reactivity of Be and Mg with O renders double doping during crystal growth very difficult. Structured green donor-acceptor pair spectra were observed at 1.6°K from many Be-diffused crystals, yielding an accurate measure of (EA)BE, 50 ± 1 meV. Moderately efficient orange-red luminescence was also observed below ∼ 100 °K from these crystals, but the intensity of this luminescence decreased rapidly to negligible levels by ∼ 200°K. This luminescence also contains sharp structure at 1.6°K, of a form characteristic of the decay of excitons bound to complex centres. Many sharp phonon replicas occur, involving local modes as well as characteristic GaP modes. One set of no-phonon lines, at least, near 2.19 eV, shows zero-field splitting, luminescence decay times and behaviour in magnetic and external strain fields characteristic of exciton decay at a centre with <100>; or <111>-type symmetry axes, containing no extra electronic particles. The exciton state is split by 2.4 meV by J-J coupling, and the axial field of the centre splits the hole states by ∼ 1.0 meV. These bound excitons are specifically characteristics of diffused GaP and appear analogous to bound excitons observed below 2.12 eV in Zn-diffused GaP. It is probable that the relevant centres contain diffusion components such as Be or Zn interstitials and improbable that OP is involved. By contrast, weak orange bound exciton luminescence observed in Mg-diffused GaP does involve O, presumably as OP. No analysis of the magneto-optical behaviour of this Mg-related bound exciton was possible in our crystals, so its symmetry axis was not established. It is possible that this is the MgGa-OP bound exciton. If so, the two-fold reductions in the exciton localisation energy from ∼ 0.32 eV to ∼ 0.15 eV and in the mass of the Ga-site substituent has produced dramatic changes in the form of the phonon cooperation between the Zn-O and “Mg-O” excitons. The “Mg-O” exciton luminescence is not dominant in our crystals, even at low temperature. The exciton state is again split by a local crystal field as well as by J-J coupling, but here the former splitting is predominant; 2∈0 = 3.9 meV, Δ = 0.60 meV.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号