首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
M2AlC phases, where M is a transition metal, are layered ternary compounds that possess unusual properties. In this paper, we have calculated the elastic properties of M2AlC, with M=Ti, V, Cr, Nb and Ta, by means of ab initio total energy calculations using the projector augmented-wave method. We have derived the bulk and shear moduli, Young's moduli and Poisson's ratio for ideal polycrystalline M2AlC aggregates. We have estimated the elastic modulus of Cr2AlC with 357.7 GPa while the values of all other phases are in the range 309±10 GPa. We suggest that this can be understood based on the calculated bond energies for the M-C bonds. Furthermore, our results indicate a profound elastic anisotropy of M2AlC even compared to materials with a well-established anisotropic character such as α-alumina. Finally, we have estimated the Debye temperatures of M2AlC from the average sound velocity.  相似文献   

2.
We have performed first-principles study on electronic structure and elastic properties of Ti2SC. The absence of band gap at the Fermi level and the finite value of the density of states at the Fermi energy reveal the metallic behavior of this compound. The five independent elastic constants were derived and the bulk modulus, Young's modulus, shear modulus, and Poisson's ratio were determined. The high bulk modulus and hardness was found to be originated from the strong Ti 3d-S 2p hybridization. Such strong MA bonding is unusual in the MAX phases studied so far. Ti2SC is elastically stable and exhibits highly elastic isotropy.  相似文献   

3.
徐学文  胡龙  宇霄  卢遵铭  范英  李养贤  唐成春 《中国物理 B》2011,20(12):126201-126201
We investigate the electronic structure, chemical bonding and elastic properties of the hexagonal aluminum carbonitride, Al5C3N, by ab initio calculations. Al5C3N is a semiconductor with a narrow indirect gap of 0.81 eV. The valence bands below the Fermi level (EF) originate from the hybridized Al p-C p and Al p-N p states. The calculated bulk and Young's moduli are 201 GPa and 292 GPa, which are slightly lower than those of Ti3SiC2. The values of the bulk-to-shear-modulus and bulk-modulus-to-c44 are 1.73 and 1.97, respectively, which are higher than those of Ti2AlC and Ti2AlN, indicating that Al5C3N is a ductile ceramic.  相似文献   

4.
The elastic modulus of Fe72.5Ga27.5 magnetostrictive alloy is determined by testing ac impedance resonance frequency and first-principle calculations. The observed elastic modulus is 90.2 GPa for a directionally solidified sample and 103.4 GPa for a water-quenched sample tested in a dc magnetic field of 32. 7mT without compressive pre-stress. The bulk modulus by first-principles calculation is 179.3GPa which is basically consistent with the experimental result. The elastic modulus first increases and then decreases with increasing dc magnetic field, attributed to magnetostriction occurrence in the Fe72.5Ga27.5 alloy. The elastic modulus increases with increasing compressive pre-stress, resulting from the initial magnetic states change under the applied compressive pre-stress. The elastic modulus increases match well with the improved magnetostriction after quenching.  相似文献   

5.
The structural and elastic properties of the antiperovskite semiconductor AsNMg3 are investigated using the full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method within the generalized gradient in the frame of the density functional theory. The ground state properties such as lattice constant, bulk modulus, pressure derivative of the bulk modulus and elastic constants are in good agreement with numerous experimental and theoretical data. Through the quasi-harmonic Debye model, in which the phononic effects are considered, we have obtained successfully the thermodynamic properties such as the thermal expansion coefficient, Debye temperature and specific heats in the whole pressure range from 0 to 30 GPa and temperature range from 0 to 1200 K.  相似文献   

6.
Using first-principles density functional calculations, the effect of high pressures, up to 20 GPa, on the structural and elastic properties of Zr2AlX and Ti2AlX, with X = C and N, were studied by means of the pseudo-potential plane-waves method. Calculations were performed within the local density approximation to the exchange-correlation approximation energy. The lattice constants and the internal parameters are in agreement with the available results. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's moduli and Poisson's ratio for ideal polycrystalline Zr2AlX and Ti2AlX aggregates. We estimated the Debye temperature of Zr2AlX and Ti2AlX from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of Zr2AlC, Zr2AlN and Ti2AlN compounds, and it still awaits experimental confirmation.  相似文献   

7.
Structural, elastic, electronic and thermal properties of the MAX phase Nb2SiC are studied by means of a pseudo-potential plane-wave method based on the density functional theory. The optimized zero pressure geometrical parameters are in good agreement with the available theoretical data. The effect of high pressure, up to 40 GPa, on the lattice constants shows that the contractions along the c-axis were higher than those along the a-axis. The elastic constants Cij and elastic wave velocities are calculated for monocrystal Nb2SiC. Numerical estimations of the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, average sound velocity and Debye temperature for ideal polycrystalline Nb2SiC aggregates are performed in the framework of the Voigt-Reuss-Hill approximation. The band structure shows that Nb2SiC is an electrical conductor. The analysis of the atomic site projected densities and the charge density distribution shows that the bonding is of covalent-ionic nature with the presence of metallic character. The density of states at Fermi level is dictated by the niobium d states; Si element has a little effect. Thermal effects on some macroscopic properties of Nb2SiC are predicted using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variations of the primitive cell volume, volume expansion coefficient, bulk modulus, heat capacity and Debye temperature with pressure and temperature in the ranges of 0-40 GPa and 0-2000 K are obtained successfully.  相似文献   

8.
The density functional theory (DFT) calculations of structural, elastic, electronic and optical properties of the cubic antiperovskite AsNMg3 has been reported using the pseudo-potential plane wave method (PP-PW) within the generalized gradient approximation (GGA). The equilibrium lattice, bulk modulus and its pressure derivative have been determined. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's modulus and Poisson's ratio for ideal polycrystalline AsNMg3 aggregate. We estimated the Debye temperature of AsNMg3 from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of AsNMg3 compound, and it still awaits experimental confirmation. Band structure, density of states and pressure coefficients of energy gaps are also given. The fundamental band gap (Γ-Γ) initially increases up to 4 GPa and then decreases as a function of pressure. Furthermore, the dielectric function, optical reflectivity, refractive index, extinction coefficient, and electron energy loss are calculated for radiation up to 30 eV. The all results are compared with the available theoretical and experimental data.  相似文献   

9.
The electronic properties and elastic parameters of the superconducting nanolaminate Ti2InC are analyzed using the ab initio full-potential linearized augmented-plane-wave (FLAPW) method with the generalized gradient approximation (GGA) of the local spin density. The equilibrium parameters of the crystal lattice, the band structure, the total and partial densities of states, and the Fermi surface are determined within a unified approach. The independent elastic constants, the bulk modulus, and the shear modulus are calculated, and the elastic parameters are numerically estimated for the first time for polycrystalline Ti2InC.  相似文献   

10.
In the present work, the structural, electronic, elastic and mechanical properties of Ti2AlC and Ti2Al(C1-xOx) solid solutions were investigated using first-principles calculations for varied O content incorporation (x = 0, 0.125, 0.25, 0.375, 0.5). According to the calculation results, all Ti2Al(C1-xOx) solid solutions with various x values are stable, and the bonding strength of the Ti–Al bond increases with the doping of O element. In addition, the shear modulus G and C44 elastic constant of Ti2Al(C1-xOx) solid solutions are both lower than the bulk modulus B, indicating that the phase has good damage tolerance. Not only that, compared with Ti2AlC, the plasticity and toughness of Ti2Al(C1-xOx) solid solutions are improved with the increase of O atom doping and doping ratio. Simultaneously, the doping of O atom is also beneficial to reduce the generalized stacking fault energy of Ti2AlC, making the Ti2Al(C1-xOx) solid solutions more prone to shear deformation, thereby further enhancing plasticity.  相似文献   

11.
 本文采用DAC(金刚石压砧高压腔)装置,对氧化镍进行了静水压、非静水压、电导率测量等系统高压实验,获取了氧化镍等温压缩、高压相变及电导率压力效应的新结果,并在实验数据的基础上,对其高压相变与电性及磁性变化关系及体弹性模量作了分析讨论。  相似文献   

12.
The structural, elastic and electronic properties of Ti2SiN were studied by first-principle calculations. The calculated bond lengths of Ti-Si and Ti-C are 2.65 and 2.09 Å, respectively. The results show Ti2SiN is mechanically stable, and its bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio μ and anisotropy factor A are determined to be 182 GPa, 118 GPa, 291 GPa, 0.233 and 1.57, respectively. The calculated electronic structure indicates that Ti2SiN is anisotropic and conductive.  相似文献   

13.
Based on the first-principles plane-wave basis pseudopotential calculations, we investigate mechanical properties and electronic structures of the hardest known oxide, cotunnite TiO2. The calculated results show that cotunnite TiO2 has the highest bulk modulus (348 GPa) and hardness (32 GPa) among the high-pressure phases of TiO2, but its mechanical properties are not superior to those of c-BN. Moreover, the high hardness of cotunnite TiO2 can be understood from both the dense crystal structure (high valence electron density and short bond lengths) and the unusual mixtures of covalent and ionic bonding of Ti-O.  相似文献   

14.
铜的高压声速和冲击熔化   总被引:4,自引:4,他引:4       下载免费PDF全文
 用光分析技术,测量了在一维应变冲击条件下,无氧铜的高压下声速,压力范围为125~170 GPa。将上述结果与Broberg、Morris等和Aльгшуер等过去发表的数据结合在一起,对0~170 GPa整个压力区间的声速数据做了综合分析,给出了声速随压力的变化规律。实验结果发现,无氧铜在156~159 GPa之间开始发生冲击熔化,到170 GPa左右,完全进入液相区;对于处于0~156 GPa固体无氧铜的弹性声速cl可用ln cl=1.565 888-2.645 488×10-2ln p+2.710 681×10-2ln2p拟合公式描述(p的单位为GPa,cl的单位为km/s),拟合值与实验值的相对误差小于1.3%。  相似文献   

15.
The lattice parameters, cell volume, elastic constants, bulk modulus, shear modulus, Young's modulus and Poisson's ratio are calculated at zero pressure, and their values are in excellent agreement with the available data, for TiN, Ti2N and Ti3N2. By using the elastic stability criteria, it is shown that the three structures are all stable. The brittle/ductile behaviors are assessed in the pressures from 0 GPa to 50 GPa. Our calculations present that the performances for TiN, Ti2N and Ti3N2 become from brittle to ductile with pressure rise. The Debye temperature rises as pressure increase. With increasing N content, the enhancement of covalent interactions and decline of metallicity lead to the increase of the micro-hardness. Their constant volume heat capacities increase rapidly in the lower temperature, at a given pressure. At higher temperature, the heat capacities are close to the Dulong–Petit limit, and the heat capacities of TiN and Ti2N are larger than that of c-BN. The thermal expansion coefficients of titanium nitrides are slightly larger than that of c-BN. The band structure and the total Density of States (DOS) are calculated at 0 GPa and 50 GPa. The results show that TiN and Ti2N present metallic character. Ti3N2 present semiconducting character. The band structures have some discrepancies between 0 GPa and 50 GPa. The extent of energy dispersion increases slightly at 50 GPa, which means that the itinerant character of electrons becomes stronger at 50 GPa. The main bonding peaks of TiN, Ti2N and Ti3N2 locate in the range from −10 to 10 eV, which originate from the contribution of valance electron numbers of Ti s, Ti p, Ti d, N s and N p orbits. We can also find that the pressure makes that the total DOS decrease at the Fermi level for Ti2N. The bonding behavior of N–Ti compounds is a combination of covalent and ionic nature. As N content increases, valence band broadens, valence electron concentration increases, and covalent interactions become stronger. This is reflected in shortening of Ti–N bonds.  相似文献   

16.
We have performed theoretical studies on the elastic and thermodynamic properties of the solid solution: Ti2AlC0.5N0.5. The lattice parameters, elastic constants, bulk, shear, Young's moduli, Poisson's ratio and Debye temperature were calculated and compared with those of the end members, Ti2AlC and Ti2AlN. The temperature dependence of the bulk moduli, thermal expansion coefficient and specific heats of Ti2AlC0.5N0.5 were obtained from the quasi-harmonic Debye model. The calculated elastic and thermodynamic properties were compared with experimental data.  相似文献   

17.
The plane-wave pseudopotential method using the generalized gradient approximation within the framework of density functional theory is applied to analyse the lattice parameters, elastic constants, bulk moduli, shear moduli and Young's moduli of WSi2. The quasi-harmonic Debye model, using a set of total energy versus cell volume obtained with the plane-wave pseudopotential method, is applied to the study of the elastic properties and vibrational effects. The athermal elastic constants of WSi2 are calculated as a function of pressure up to 35GPa. The relationship between bulk modulus and temperature up to 1200K is also obtained. Moreover, the Debye temperature is determined from the non-equilibrium Gibbs function. The calculated results are in good agreement with the experimental data.  相似文献   

18.
Structural, elastic and electronic properties of ReO2 are investigated by first-principles calculations based on density functional theory. The ground stateof ReO2 has an orthorhombic symmetry which belongs to space group Pbcn with a=4.7868Å b=5.5736Å, and c=4.5322Å. The calculated bulk moduli are 322GPa, 353GPa, and 345GPa for orthorhombic, tetragonal, and monoclinic ReO2, respectively, indicating that ReO2 has a strong incompressibility. ReO2 is a metal ductile solid and presents large elastic anisotropy. The obtained Debye temperatures are 850K for orthorhombic, 785K for tetragonal, and 791K for monoclinic ReO2.  相似文献   

19.
We present in this paper the results of an ab initio theoretical study within the local density approximation (LDA) to determine in rock-salt (B1), cesium chloride (B2), zinc-blende (B3), and tungsten carbide (WC) type structures, the structural, elastic constants, hardness properties and high-pressure phase of the noble metal carbide of ruthenium carbide (RuC).The ground state properties such as the equilibrium lattice constant, elastic constant, the bulk modulus, its pressure derivative, and the hardness in the four phases are determined and compared with available theoretical data. Only for the three phases B1, B3, and WC, is the RuC mechanically stable, while in the B2 phase it is unstable, but in B3 RuC is the most energetically favourable phase with the bulk modulus 263 GPa, and at sufficiently high pressure (Pt=19.2 GPa) the tungsten carbide (WC) structure would be favoured, where ReC-WC is meta-stable.The highest bulk modulus values in the B3, B2, and WC structures and the hardnesses of H(B3)=36.94 GPa, H(B1)=25.21 GPa, and H(WC)=25.30 GPa indicate that the RuC compound is a superhard material in B3, and is not superhard in B1 and WC structures compared with the H(diamond)=96 GPa.  相似文献   

20.
 采用金刚石压砧高压装置(DAC),对具有Cu—O链结构的Ca2CuO3的多晶粉末样品进行了高压同步辐射能散X射线衍射实验。实验结果表明,在0~34 GPa压力范围内,Ca2CuO3晶体没有发生结构相变,用Birch-Murnaghan状态方程拟合,得到在压力导数B′0=4时,零压体弹模量B0=165.4±1.8 GPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号