首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The applicability of comprehensive two-dimensional gas chromatography (GCxGC) for sterol analysis was investigated by separation and identification of endogenous sterols in standards, and spiked in human urine. The modulation temperature was optimized to achieve the best separation and signal enhancement. The separation pattern of trimethylsilyl (TMS) derivatives of sterols was compared on two complementary column sets. Whilst the BPX5/BPX50 column set offers better overall separation, BPX50/BPX5 provides better peak shape and sensitivity. Comparison of the identification power of GCxGC-TOFMS against both the NIST05 MS library and a laboratory created (in-house) TOFMS library was carried out on a free sterols extract of urine, derivatised and spiked at the World Anti-Doping Agency (WADA) limit of 2 ng mL(-1). The average match quality for 19 analysed sterols on the BPX50/BPX5 column set was 950/1000 when searched against the in-house library; only four were identified against the NIST05 library, at a match threshold of 800. The match quality of GCxGC-TOFMS spectra was superior to that for analysis using 1D GC-TOFMS for sterols spiked in urine at 10 ng mL(-1). An r(2)>0.997 was obtained for the concentration range between 0.25 ng mL(-1) and 10 ng mL(-1) for three selected sterols. The lowest limit of detection (LOD) was obtained for estrone (0.1 ng mL(-1)) and the highest LOD was for 5alpha-androstan-3alpha,11beta-diol-17-one, epitestosterone and cholesteryl butyrate (1 ng mL(-1)), using a match threshold of at least 800 and signal-to-noise ratio of at least 10. TOFMS coupled to GCxGC enabled satisfactory identification of sterols in urine at their LOD. A minimum acceptable match (MAM) criterion for urinary sterols using 2D retention times and TOF mass spectra is introduced. This study shows that GCxGC-TOFMS yields high specificity for steroids derived from urine, with detection limits appropriate for use in doping control.  相似文献   

2.
建立了烟叶中酸性化合物(挥发性、 半挥发性羧酸类和酚类)组成研究的全二维气相色谱/飞行时间质谱(GC×GC-TOFMS)分析方法, 并用此方法对香料烟中的酸性化合物进行了表征. 用同时蒸馏萃取样品的前处理方法, 采用TOFMS谱图库检索结合全二维特有的包含结构信息的二维谱图, 通过族分离和结构谱图, 鉴定出了香料烟中143种挥发性及半挥发性酸性组分, 包括10种酸酐和呋喃二酮, 43种有机酸和90种酚类化合物. 同时对不同类别的化合物在二维气相色谱上的分布模式进行了研究. 结果表明, 全二维气相色谱飞行时间质谱的高分辨率非常适合于烟叶这类复杂体系的分离分析.  相似文献   

3.
建立了烟叶中挥发性、半挥发性碱性化合物组成研究的全二维气相色谱/飞行时间质谱(GC×GC/TOFMS)分析方法, 并用所建立的方法对香料烟中碱性化合物进行了表征. 对比了一维气相色谱和全二维色谱方法用于烟叶碱性组分组成分析的效果. 一维色谱质谱方法共鉴定出45种碱性化合物. 用所建立的全二维气相色谱方法, 采用TOFMS谱图库检索结合全二维特有的包含结构信息的二维谱图, 通过族分离和结构谱图鉴定, 鉴定出了香料烟中挥发性、半挥发性碱性组分共92种. 包括吡咯类化合物6种, 吡啶类化合物39种, 吡嗪类化合物10种, 苯胺类化合物11种, 喹啉类化合物11种, 吲哚类4种和其他类化合物11种. 同时对不同类别的化合物在二维气相色谱上的分布模式进行了研究. 研究结果表明, 全二维色谱飞行时间质谱的高分辨率和特有的定性手段适合于烟叶这类复杂植物体系的化学组成研究.  相似文献   

4.
In the presented study, comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC?×?GC-TOFMS) was shown to be a powerful tool for the simultaneous determination of various groups of contaminants including 18 polychlorinated biphenyls (PCBs), seven polybrominated diphenyl ethers (PBDEs), and 16 polycyclic aromatic hydrocarbons (PAHs). Since different groups of analytes (traditionally analyzed separately) were included into one instrumental method, significant time savings were achieved. Following the development of an integrated sample preparation procedure for an effective and rapid isolation of several groups of contaminants from fish tissue, the GC?×?GC-TOFMS instrumental method was optimized to obtain the best chromatographic resolution and low quantification limits (LOQs) of all target analytes in a complex mixture. Using large-volume programmable temperature vaporization, the following LOQs were achieved-PCBs, 0.01-0.25 μg/kg; PBDEs, 0.025-5 μg/kg; PAHs 0.025-0.5 μg/kg. Furthermore, several capillary column combinations (BPX5, BPX50, and Rxi-17Sil-ms in the first dimension and BPX5, BPX50, Rt-LC35, and HT8 in the second dimension) were tested during the experiments, and the optimal separation of all target analytes even of critical groups of PAHs (group (a): benz[a]anthracene, cyclopenta[cd]pyrene and chrysene; group (b): benzo[b]fluoranthene, benzo[j]fluoranthene and benzo[k]fluoranthene; group (c): dibenz[ah]anthracene, indeno[1,2,3-cd]pyrene and benzo[ghi]perylene) was observed on BPX5?×?BPX50 column setup. Moreover, since the determination of target analytes was performed using TOFMS detector, further identification of other non-target compounds in real life samples was also feasible.  相似文献   

5.
A technique using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC × GC/TOFMS) is applied to a qualitative analysis of three sample extracts from hair suspected of containing various drug compounds. The samples were also subjected to a quantitative target analysis for codeine, morphine, 6-monoacetylmorphine (6-MAM), amphetamine, methamphetamine, methylenedioxyamphetamine (MDA), methylenedioxymethylamphetamine (MDMA), methadone, and benzylpiperazine (BZP) by liquid chromatography-tandem mass spectrometry (LC-MS/MS). GC × GC/TOFMS provided a non-specific procedure that identified various drugs, metabolites, and impurities not included in the target analysis. They included cocaine, diazepam, and methaqualone (quaalude). Comprehensive GC × GC separation was achieved using twin-stage cryo-modulation to focus eluant from a DB-5ms (5% phenyl) to a BPX50 (50% phenyl) GC column. The TOF mass spectrometer provided unit mass resolution in the mass range m/z 5–1000 and rapid spectral acquisition (≤500 spectra/s). Clean mass spectra of the individual components were obtained using mass spectral deconvolution software. The ‘unknown’ components were identified by comparison with mass spectra stored in a library database.  相似文献   

6.
First, standard mixtures of trimethylsilyl (TMS) derivatives of amino acid and organic acid are analyzed by comprehensive two-dimensional (2D) gas chromatography (GC) coupled to time-of-flight mass spectrometry (GC × GC/TOFMS) in order to illustrate important issues regarding application of the technique. Specifically of interest is the extent to which the peak capacity of the 2D separation space has been utilized and the procedure by which the derivative standards are identified in the 2D separations using the mass spectral information. The resulting 2D separation is found to make extensive use of the GC × GC separation space provided by the complementary stationary phases employed.Second, in order to demonstrate GC × GC/TOFMS on two real sample types, trimethylsilyl metabolite derivatives were analyzed from extracts of common lawn grass samples (i.e., perennial rye grass), as a means to provide insight into both the pre and post harvest physiology. Various chemical components in the two rye grass extract samples were found to either emerge or disappear in relation to the trauma response. For example, a significant difference in the peak for the TMS derivative of malic acid was found. The successful analysis of various components was readily facilitated by the 2D separation, while a 1D separation would have produced too much peak overlap, thus impeding the analysis. The importance of using a GC × GC separation approach for the analysis of complex samples, such as metabolite extracts, is therefore demonstrated. The real-time analysis capability of GC × GC/TOFMS for multidimensional metabolite analysis makes this technique well suited to the high-throughput analysis of metabolomic samples, especially compared to slower, stopped-flow type separation approaches.  相似文献   

7.
The application of comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOFMS) for the analysis of six anabolic agents (AAs) in doping control is investigated in this work. A non-polar–polar column configuration with 0.2 μm film thickness (df) second dimension (2D) column was employed, offering much better spread of the components on 2D when compared to the alternative 0.1 μm df2D column. The proposed method was tested on the “key” AA that the World Anti-Doping Agency (WADA) had listed at the low ng mL−1 levels (clenbuterol, 19-norandrosterone, epimethendiol, 17α-methyl-5α-androstane-3α,17β-diol, 17α-methyl-5β-androstane-3α,17β-diol and 3′-OH-stanozolol). The compounds were spiked in a blank urine extract obtained by solid-phase extraction, hydrolysis and liquid–liquid extraction; prior to analysis they were converted to the corresponding trimethylsilyl (TMS) derivatives. The limit of detection (LOD) was below or equal to the minimum required performance limit (MRPL) of 2 ng mL−1 defined by WADA, and the correlation coefficient was in the range from 0.995 to 0.999. The method allows choosing an ion from the full mass spectra which shows the least interference from the matrix and/or the best sensitivity; this can only be done if full scan mass spectral data are available. The advantage of GC × GC over classical one-dimensional GC (1D GC), in terms of separation efficiency and sensitivity, is demonstrated on a positive urine control sample at a concentration of 5 ng mL−1. The obtained similarity to the in-house created TOFMS spectra library at this level of concentration was in the range from 822 to 932 (on the scale from 0 to 999). Since full mass spectral information are recorded, the method allows the retro-search of non-target compounds or new “designer steroids”, which cannot be detected with established GC–MS methods that use selected ion monitoring (SIM) mode.  相似文献   

8.
Comprehensive two-dimensional gas chromatography with isotope-dilution time-of-flight mass spectrometry (GC × GC-IDTOFMS) was used to measure polychlorinated dibenzo-p-dioxin (PCDD), polychlorinated dibenzofuran (PCDF), and coplanar polychlorinated biphenyl (cPCB) concentrations in ash, sediment, vegetation, and fish samples. The GC × GC capability was achieved by using a quad jet, dual stage, thermal modulator. Zone compression of the GC peaks from modulation resulted in a significant increase of the signal intensity over classical GC-IDTOFMS. The GC × GC column set used an Rtx-Dioxin 2 phase as the first dimension (1D) and an Rtx-500 as the second dimension (2D). The chromatographic separation of the 17 PCDD/Fs and the 4 cPCBs was attained in 1D except for 2,3,7,8-TCDD and CB126 for which deconvoluted ion currents (DIC) were required to be reported separately. The Rtx-500 phase separated the bulk matrix interfering compounds from the target analytes in 2D. The instrumental limit of detection (iLODs) was 0.5 pg for 2,3,7,8-TCDD. The calibration curves showed good correlation coefficients for all the compounds investigated in the concentration range of 0.5–200 pg. GC × GC-IDTOFMS results compared favorably to those from conventional isotope-dilution one-dimensional gas chromatography-high resolution mass spectrometry (GC-IDHRMS). The comprehensive mass analysis of the TOFMS further permitted the identification of other contaminants of concern in the samples.  相似文献   

9.
Comprehensive two-dimensional gas chromatography (GC x GC) analysis has the capability to resolve many more components of complex mixtures than traditional single column GC analysis. There is an increasing need to provide reliable identification of these separated components; time-of-flight mass spectrometry (TOFMS) is the most appropriate technology to achieve this task. Rather than require MS for all GC x GC separations, it is desirable to assign peak identities to specific peak positions in the GC x GC separation space, and this necessitates matching peak retentions in the two experiments - GC x GC-FID and GC x GC-TOFMS. The atmospheric vs. vacuum outlet conditions confound this task. It is shown here that by employing a supplementary gas supply, provided to a T-union between the column outlet and the MS interface, it is possible to generate 2D chromatograms for GC x GC-FID and GC x GC-TOFMS that are essentially exactly matched. There is no degradation in separation performance or efficiency in the second column in the system interfaced to the T-union. Since the GC x GC-FID experiment uses hydrogen for maximum efficiency, and GC x GC-TOFMS uses helium carrier, translation of (conditions/retentions) must account for the different viscosities of the carrier gases. Translation of conditions is based on well-known principles established in single column analysis. Tabulated data illustrate that retention reproducibility was of the order of better than 4 s for the average first dimension retention difference, and about 40 ms for the average second dimension retention difference when comparing GC x GC-FID and GC x GC-TOFMS results. This should provide considerable support for identification in routine GC x GC-FID analysis of specific sample types, once the peaks in 2D separation space have been assigned identities through GC x GC-TOFMS analysis.  相似文献   

10.
The potential of comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS) in the quantitative analysis of amino acid enantiomers (AAEs) as their methyl chloroformate (MCF) derivatives in physiological fluids was investigated. Of the two column sets tested, the combination of an Rt-γDEXsa chiral column with a polar ZB-AAA column provided superior selectivity. Twenty AAEs were baseline resolved including L-Leu and D-Ile, which had failed separation by one-dimensional chiral GC-quadrupole-MS (GC-qMS). Lower limits of quantification (LLOQ) were in the range of 0.03-2 μM. Reproducibility of the analysis of a serum specimen in octaplicate ranged from 1.3 to 16.6%. The GC×GC-TOFMS method was validated by analyzing AAEs in 48 urine and 43 serum specimens, respectively, and by comparing the results with data obtained by a previously validated GC-qMS method. Mean recoveries ranged from 78.4% for D-Leu to 116.4% for D-Pro in urine and 72.2% for L-Thr to 129.4% for L-Ile in serum. The method was applied to the comparison of AAE serum levels in patients suffering from liver cirrhosis to a control group. Significantly increased D-AA concentrations were found for the patient group, whereas L-AA levels were slightly decreased.  相似文献   

11.
In the present work, the separation of complex nonylphenol technical mixtures has been optimized using comprehensive two-dimensional gas chromatography coupled with a flame ionization detector and quadrupole mass spectrometer (GC×GC-qMS), using valve-based modulator. The optimization of GC×GC-qMS has been carried out using experimental designs and the optimal separation was obtained at the following conditions: 1st column flow: 1mL/min; 2nd column flow: 17.75 mL/min, oven temperature ramp: 1°C/min, modulation period: 1.5s and discharge time: 0.12s. These values have been used to determinate the previously synthesized 22OP, 33OP, 363NP and 22NP isomers in two different nonylphenol technical mixtures. Percentages obtained were as follows: 4.86% and 0.59% for 22OP, 4.91% and 2.82% for 33OP, 11.79% and 7.71% for 363NP and 2.28% and 1.98% for 22NP, in Fluka and Aldrich mixtures, respectively. The values obtained for NP isomers are in good agreement with the literature.  相似文献   

12.
Pyrolysis oils have attracted a lot of interest, as they are liquid energy carriers and general sources of chemicals. In this work, gas chromatography with flame ionization detector (GC-FID) and two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) techniques were used to provide both qualitative and quantitative results of the analysis of three different pyrolysis oils. The chromatographic methods and parameters were optimized and solvent choice and separation restrictions are discussed. Pyrolysis oil samples were diluted in suitable organic solvent and were analyzed by GC×GC-TOFMS. An average of 300 compounds were detected and identified in all three samples using the ChromaToF (Leco) software. The deconvoluted spectra were compared with the NIST software library for correct matching. Group type classification was performed by use of the ChromaToF software. The quantification of 11 selected compounds was performed by means of a multiple-point external calibration curve. Afterwards, the pyrolysis oils were extracted with water, and the aqueous phase was analyzed both by GC-FID and, after proper change of solvent, by GC×GC-TOFMS. As previously, the selected compounds were quantified by both techniques, by means of multiple point external calibration curves. The parameters of the calibration curves were calculated by weighted linear regression analysis. The limit of detection, limit of quantitation and linearity range for each standard compound with each method are presented. The potency of GC×GC-TOFMS for an efficient mapping of the pyrolysis oil is undisputable, and the possibility of using it for quantification as well has been demonstrated. On the other hand, the GC-FID analysis provides reliable results that allow for a rapid screening of the pyrolysis oil. To the best of our knowledge, very few papers have been reported with quantification attempts on pyrolysis oil samples using GC×GC-TOFMS most of which make use of the internal standard method. This work provides the ground for further analysis of pyrolysis oils of diverse sources for a rational design of both their production and utilization process.  相似文献   

13.
A technique using comprehensive two‐dimensional gas chromatography/time‐of‐flight mass spectrometry (GC × GC/TOFMS) is applied to qualitative and quantitative drug testing. Human serum was ‘spiked’ with known quantities of benzodiazepines and a ‘street heroin’ mixture including some of the major metabolites and impurities. The sample components were extracted from the matrix by solid‐phase extraction (SPE). Constituents containing polar hydroxyl and/or secondary amine groups were derivatised with N‐methyl‐N‐(tert‐butyldimethyl)trifluoroacetamide (MTBSTFA) to improve the chromatographic performance. An orthogonal separation of the matrix constituents was achieved by coupling a DB‐5ms (5% phenyl) to a BPX50 (50% phenyl) GC column. The eluant was focused onto the second column by a twin‐stage cryo‐modulator. Rapid 6 s modulation times were achieved by transfer from a 30 m × 0.25 mm (length × internal diameter) to a 2 m × 0.1 mm column. TOFMS with rapid spectral acquisition (≤500 spectra/s) was employed in the mass range m/z 40–650. A clean mass spectrum was obtained for each analyte using mass spectral deconvolution software. The sensitivity and repeatability of the method were evaluated by the preparation of calibration standards for two benzodiazepines, flunitrazepam and its major metabolite 7‐aminoflunitrazepam (7‐amino‐FN), in the concentration range 5–1000 ng/mL. The limits of detection (LODs) and limits of quantitation (LOQs), calculated by repeat injections (×10) of the lowest standard, were 1.6 and 5.4 ng/mL (flunitrazepam); 2.5 and 8.5 ng/mL (7‐amino‐FN), respectively. There is scope to extend this protocol to screen a large number of drugs and metabolites stored in a library database. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
In this work, a methodology to characterise the volatile and semi-volatile compounds from marine salt by headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC/TOFMS) was developed. Samples from two saltpans of Aveiro, in Portugal, with diverse locations, obtained over three years (2004, 2005, and 2007) were analysed. A 50/30 μm divinylbenzene/carboxen/polydimethylsiloxane SPME fibre was used. The volatiles present in the headspace of the solid salt samples (crystals) were equilibrated overnight at 60 °C and extracted for 60 min prior to injection in the GC × GC/TOFMS. 157 compounds, distributed over the chemical groups of hydrocarbons, aldehydes, esters, furans, haloalkanes, ketones, ethers, alcohols, terpenoids, C13 norisoprenoids, and lactones were detected across the samples. Furans, haloalkanes and ethers were identified for the first time in marine salt. The large number of co-elutions on the first column that were resolved by the GC × GC system revealed the complexity of marine salt volatile composition. The existence of a structured 2D chromatographic behaviour according to volatility, in the first dimension (1D), and primarily polarity, in the second dimension (2D), was demonstrated, allowing more reliable identifications. The resolution and sensitivity of GC × GC/TOFMS enabled the separation and identification of a higher number of volatile compounds compared to GC–qMS, allowing a deeper characterisation of this natural product.  相似文献   

15.
建立了全二维气相色谱-飞行时间质谱(GC×GC-TOF MS)分析卷烟主流烟气中中性化学成分的方法。以较长的弱极性柱HP-5MS(50 m×0.2 mm i.d.×0.33μm)作为第一维柱,较短的薄液膜中等极性柱DB-17MS(1.7 m×0.1 mm i.d.×0.1μm)作为第二维柱,对优质烟叶单料卷烟烟气的中性成分进行定性分析,经过人工纠错等分析初步鉴定出匹配度大于700的1 464种成分,重点讨论了中性香味羰基化合物全二维点阵的谱图特征,为烟气和复杂体系的深入研究提供了方法学基础。  相似文献   

16.
Ultra resolution chemical fingerprinting of dense non-aqueous phase liquids (DNAPLs) from former manufactured gas plants (FMGPs) was investigated using comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry (GC×GC TOFMS). Reversed phase GC×GC (i.e. a polar primary column coupled to a non-polar secondary column) was found to significantly improve the separation of polycyclic aromatic hydrocarbons (PAHs) and their alkylated homologues. Sample extraction and cleanup was performed simultaneously using accelerated solvent extraction (ASE), with recovery rates between 76% and 97%, allowing fast, efficient extraction with minimal solvent consumption. Principal component analysis (PCA) of the GC×GC data was performed in an attempt to differentiate between twelve DNAPLs based on their chemical composition. Correlations were discovered between DNAPL composition and historic manufacturing processes used at different FMGP sites. Traditional chemical fingerprinting methods generally follow a tiered approach with sample analysis on several different instruments. We propose ultra resolution chemical fingerprinting as a fast, accurate and precise method of obtaining more chemical information than traditional tiered approaches while using only a single analytical technique.  相似文献   

17.
In this study, the investigation of the volatile compounds of dried rhizomes of Coptis chinensis Franch, C. deltoidea C. Y. Cheng et Hsiao, and C. teeta Wall was carried out to complete the chemical composition of these valuable natural products. Volatile profiles were established and compared after headspace solid-phase microextraction (HS-SPME) using a polydimethylsiloxane/divinylbenzene (PDMS/DVB, 65 μm) fibre coupled to comprehensive 2D gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS). Analyses were performed and compared on two column-phase combinations (non-polar/polar and polar/non-polar). The majority of the identified compounds eluted as well-separated (pure) components as a result of high-resolution capability of the GC×GC method, which significantly reduces co-elution. Therefore, this increases the likelihood that pure mass spectra can be obtained. More than 290 volatile and semi-volatile organic compounds were tentatively characterized by means of GC×GC in tandem with TOFMS detection. Improved result interpretations were obtained in terms of compound classification based on the organized structure of the peaks of structurally related compounds in the GC×GC contour plot. These compounds are distributed over the chemical groups of hydrocarbons, acids, alkenes, alkynes, aldehydes, ketones, alcohols, esters, furans, and terpenoids. Among all the chemical groups, terpenoids present the higher number of identified compounds (44), alkenes (41), and aldehydes and ketones (28). This study completed the volatile phytochemical analysis of the headspace composition of various Coptis species rhizomes, and should serve as a means to identify the difference between the rhizomes and may also be useful to confirm individual species based on their volatile chemical profile.  相似文献   

18.
Two-dimensional gas chromatography (GC x GC) coupled to time-of-flight mass spectrometry (TOFMS) [GC x GC-TOFMS)] is a highly selective technique well suited to analyzing complex mixtures. The data generated is information-rich, making it applicable to multivariate quantitative analysis and pattern recognition. One separation on a GC x GC-TOFMS provides retention times on two chromatographic columns and a complete mass spectrum for each component within the mixture. In this report, we demonstrate how GC x GC-TOFMS combined with trilinear chemometric techniques, specifically parallel factor analysis (PARAFAC) initiated by trilinear decomposition (TLD), results in a powerful analytical methodology for multivariate deconvolution. Using PARAFAC, partially resolved components in complex mixtures can be deconvoluted and identified without requiring a standard data set, signal shape assumptions or any fully selective mass signals. A set of four isomers (iso-butyl, sec-butyl, tert-butyl, and n-butyl benzenes) is used to investigate the practical limitations of PARAFAC for the deconvolution of isomers at varying degrees of chromatographic resolution and mass spectral selectivity. In this report, multivariate selectivity was tested as a metric for evaluating GC x GC-TOFMS data that is subjected to PARAFAC peak deconvolution. It was found that deconvolution results were best with multivariate selectivities over 0.18. Furthermore, the application of GC x GC-TOFMS followed by TLD/PARAFAC is demonstrated for a plant metabolite sample. A region of GC x GC-TOFMS data from a complex natural sample of a derivatized metabolic plant extract from Huilmo (Sisyrinchium striatum) was analyzed using TLD/PARAFAC, demonstrating the utility of this analytical technique on a natural sample containing overlapped analytes without selective ions or peak shape assumptions.  相似文献   

19.
The headspace compositions of 13 pepper and peppercorn samples of different species, colloquially also referred to as pepper, were analyzed, and more than 300 compounds were tentatively characterized by means of comprehensive two-dimensional gas chromatography in tandem with flame ionization detection, quadrupole mass spectrometric detection and time-of-flight mass spectrometric detection (GC x GC-FID, GC x GC/qMS and GC x GC/TOFMS, respectively). The analysis of volatile organic compounds (VOCs) was performed after solid-phase microextraction (SPME) using a 75-microm PDMS/DVB fibre. Fingerprint comparison between the three techniques permitted peaks to be assigned in the GC x GC-FID experiment based on the analogous MS analysis, taking into account retention shifts arising from method variations. When using GC x GC/TOFMS, about five times more peaks were identified than in GC x GC/qMS. Retention indices for all peaks were calculated in the bi-dimensional column set comprising of a 5% phenyl polysilphenylene-siloxane primary column and a polyethylene glycol second column. The spectra obtained by both mass detection techniques (qMS and TOFMS) give very similar results when spectral library searching was performed. The majority of the identified compounds eluted as pure components as a result of high-resolution GC x GC separations, which significantly reduces co-elution, and therefore increases the likelihood that pure spectra can be obtained. The differences between TOFMS and qMS (in fast scanning mode) spectra were generally small. Whilst spectral quality and relative ion ratios across a narrow peak (e.g. w(b) approximately 100-150 ms) do vary more for the fast peaks obtained in GC x GC/qMS operation, than with TOFMS, in general adequate spectral matching with the library can be achieved.  相似文献   

20.
A sample of tobacco essential oil was analyzed using gas chromatography-mass spectrometry (GC/MS) and comprehensive two-dimensional gas chromatography coupled to a time-of-flight mass spectrometry (GC × GC/TOFMS), respectively. In the GC/MS analysis, serially coupled columns were used. By comparing the GC/MS results with GC × GC/TOFMS results, many more components in the essential oil could be found within the two-dimensional separation space of GC × GC. The quantitative determination of components in the essential oil was performed by GC × GC with flame ionization detection (FID), using a method of multiple internal standards calibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号