首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
建立了烟叶中酸性化合物(挥发性、 半挥发性羧酸类和酚类)组成研究的全二维气相色谱/飞行时间质谱(GC×GC-TOFMS)分析方法, 并用此方法对香料烟中的酸性化合物进行了表征. 用同时蒸馏萃取样品的前处理方法, 采用TOFMS谱图库检索结合全二维特有的包含结构信息的二维谱图, 通过族分离和结构谱图, 鉴定出了香料烟中143种挥发性及半挥发性酸性组分, 包括10种酸酐和呋喃二酮, 43种有机酸和90种酚类化合物. 同时对不同类别的化合物在二维气相色谱上的分布模式进行了研究. 结果表明, 全二维气相色谱飞行时间质谱的高分辨率非常适合于烟叶这类复杂体系的分离分析.  相似文献   

2.
建立了卷烟主流烟气粒相物中酚类化合物组成研究的全二维气相色谱/飞行时间质谱方法,并用所建立的方法对一种市售混合型卷烟主流烟气粒相物中的酚类馏分组成进行了表征.采用TOFMS谱图库检索辅以二维“结构谱图”的定性手段,初步鉴定出了其中250个酚类化合物.这些酚类化合物包括66个烷基苯酚、47个烯基苯酚、57个萘酚、17个苯基苯酚、32个甲氧基苯酚、9个酚酮和15个酚醛化合物.同时对不同类型的酚类化合物在二维气相色谱上的分布模式进行了讨论.  相似文献   

3.
建立了全二维气相色谱-飞行时间质谱( GC×GC - TOF MS)分析卷烟主流烟气中中性化学成分的方法.以较长的弱极性柱HP-5 MS(50 m×0.2 mm i.d.×0.33 μm)作为第一维柱,较短的薄液膜中等极性柱DB-17MS(1.7 m×0.1 mm i.d.×0.1 μm)作为第二维柱,对优质烟叶单料卷烟烟气的中性成分进行定性分析,经过人工纠错等分析初步鉴定出匹配度大于700的1 464种成分,重点讨论了中性香味羰基化合物全二维点阵的谱图特征,为烟气和复杂体系的深入研究提供了方法学基础.  相似文献   

4.
通过优化GC×GC的柱系统、温度程序和调制参数等色谱条件,建立了分析中药莪术挥发油组成的全二维气相色谱/飞行时间质谱(GC×GC/TOFMS)方法,实现了莪术挥发油的单个组分与族组分分析.采用所建立的GC×GC/TOFMS方法,鉴定出匹配度大于800的组分有249种,其中单萜18种,单萜含氧衍生物34种,倍半萜35种,倍半萜含氧衍生物37种,有69种组分的体积分数大于0.02%.  相似文献   

5.
建立了全二维气相色谱/飞行时间质谱法 (GC×GC-TOFMS) 快速定性分析飞灰样品中17种二(噁)英的方法.实验证明,采用GC×GC二维特征谱图、TOFMS谱图库检索(自建谱库和NIST库)以及丰度比的定性手段,能在42.5 min内快速分离和定性17种二(噁)英的同分异构体.本方法对大于 0.5 pg/μL (TCDD) 的样品有较好的灵敏度.因此,在二(噁)英分析领域,GC×GC/TOFMS技术可以作为高分辨气相色谱/质谱(HRGC/HRMS)技术的补充和替代.  相似文献   

6.
建立了全二维气相色谱-飞行时间质谱(GC×GC-TOF MS)分析卷烟主流烟气中中性化学成分的方法。以较长的弱极性柱HP-5MS(50 m×0.2 mm i.d.×0.33μm)作为第一维柱,较短的薄液膜中等极性柱DB-17MS(1.7 m×0.1 mm i.d.×0.1μm)作为第二维柱,对优质烟叶单料卷烟烟气的中性成分进行定性分析,经过人工纠错等分析初步鉴定出匹配度大于700的1 464种成分,重点讨论了中性香味羰基化合物全二维点阵的谱图特征,为烟气和复杂体系的深入研究提供了方法学基础。  相似文献   

7.
采用全二维气相色谱/飞行时间质谱法(GC×GC/TOFMS),以较长的非极性柱DB-5MS(30m×0.25mm×0.25μm)作为第一维柱,较短的中等极性柱DB-17MS(2m×0.1mm×0.1μm)作为第二维柱,利用固相微萃取法作为香味成分的萃取方法,对薄荷型ESSE卷烟的核心香味成分进行了定性分析,TOFMS谱图库检索结合全二维特有的包含结构信息的二维谱图,通过族分离和结构谱图鉴定,共鉴定了187种挥发性成分,其中对香气有贡献的成分118种.  相似文献   

8.
牛鲁娜  刘泽龙  周建  蔡新恒  田松柏 《色谱》2014,32(11):1236-1241
建立了全二维气相色谱-飞行时间质谱(GC×GC-TOF MS)分析柴油馏分中饱和烃的分子组成的方法。结合谱库检索、质谱图解析、沸点与分子结构关系和全二维谱图特征,定性(或归类)了焦化柴油饱和烃组分中1057个化合物单体,其中正构烷烃排列规律性最强,一环~三环环烷烃按照极性和沸点的差异呈瓦片状分布在其上方。另外,还准确区分了在一维气相色谱上共流出的正构烷基环己烷和正构烷基环戊烷,以及正构 α 单烯烃。根据质谱采集的总离子流色谱图,采用峰面积归一化法得到了饱和烃组分的碳数分布结果,并将该方法应用于研究不同类型柴油馏分饱和烃的分子组成特点。结果表明,催化裂化和焦化柴油馏分饱和烃组分的化合物类型和分布各不相同。分子组成分析能为油品加工工艺机理的研究提供方法支持。  相似文献   

9.
采用同时蒸馏萃取法提取烟叶中的挥发性成分,利用气相色谱-质谱联用仪(GC-MS)分离测定,通过谱库检索和匹配度定性结合色谱保留指数方法鉴定烟叶中挥发性成分,并引入离子阱二级质谱对谱库检索匹配度差距小、含量低,背景干扰大的物质准确定性.采用谱图检索结合二级质谱定性共鉴定144个化合物,其中104个化合物在烟草挥发性成分的文献中已有报道,报道中有9个化合物是通过二级质谱定性,其余40个化合物还未见报道.结果表明,离子阱二级质谱定性的引入提高了对未知化合物定性的准确性和可靠性,适合于烟叶这类复杂植物体系的化学组分研究.  相似文献   

10.
选取产于小兴安岭的新鲜赤松松针,采用水蒸气蒸馏法提取其中的挥发油,并通过全二维气相色谱/飞行时间质谱(GC×GC/TOF MS)对松针挥发油进行分析和鉴定。对色谱条件进行了优化,确定调制周期为6 s,二维色谱柱长为3 m,二维柱箱相对一维柱箱温度高20℃为最佳色谱条件。通过分析,鉴定出217种物质,其中萜类124种,包含单萜48种、倍半萜64种、二萜12种,共占总含量约69%,酯类33种,占总含量约12%,有机酸类6种,醇类15种,醛类15种,酮类11种和其他类化合物13种。相比于传统一维色谱(1DGC),全二维气相色谱(GC×GC)能提供数倍的峰容量,并对一些天然产物的异构体有着很好的分离,因此其在复杂天然产物分析方面具有独特优势。  相似文献   

11.

Decomposition odour analysis involves the chemical profiling of volatile organic compounds produced by decomposing remains. This is important for areas of forensic science that rely on the detection of decomposition odour such as insect attraction to carrion, positive alerts of cadaver dogs to decomposing remains, and the development of field instrumentation for search and recovery procedures. Traditionally decomposition odour analysis has been performed using gas chromatography–quadrupole mass spectrometry (GC–qMS); however, the use of comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC×GC–TOFMS) is rapidly becoming more prevalent. The objective of this study was to compare GC–qMS and GC×GC–TOFMS for decomposition odour profiling based on inter-year replicate field studies using decomposing porcine remains. The increased peak capacity, sensitivity and selectivity afforded by GC×GC–TOFMS allowed peak co-elutions, chromatographic artefacts, and dynamic range to be more easily addressed and managed. Furthermore, the software associated with GC×GC–TOFMS provided several additional benefits including improved peak alignment between samples and increased consistency of reported results, overall allowing for additional statistical tests to be applied following data processing. Future GC–qMS results could be improved by implementing some of these software-associated procedures, potentially reducing the magnitude of variation observed between GC–qMS and GC×GC–TOFMS studies. One-dimensional GC analysis may also benefit substantially from coupling with TOFMS detection to provide an indirect increase in peak capacity using deconvolution. However, the wealth of information gained by using GC×GC–TOFMS in decomposition odour profiling is undoubtedly an asset in this field of research.

  相似文献   

12.
采用全二维气相色谱-飞行时间质谱(GC×GC-TOF MS)对催化裂化汽油全馏分进行了定性与定量分析,建立了相应的分析方法.结果表明,汽油族组成中的烷烃、烯烃、环烷烃、芳烃在全二维点阵谱图中呈分区域、带状的分布特点.GC×GC-TOF MS根据催化裂化汽油组分内分子的沸点及极性差异对其进行两个维度分离,极大地避免了普通色谱法分析过程中沸点相似化合物共流的弊端,实现催化裂化汽油组分的精确分离和准确定性分析.通过引入响应因子,修正了不同性质的烃类在电离源上电离效率的差异,使得TOF对催化裂化汽油族组成的定量结果与普通气相色谱法的定量结果的相关性较好,且应用GC×GC-TOF MS方法获得了催化裂化汽油更为精确的族组成信息.GC×GC-TOF MS为催化裂化汽油精确表征提供了一种有效方法.  相似文献   

13.
Comprehensive multidimensional gas chromatography (GC×GC) is a powerful separation technique. One of the features of this technique is that it offers separations with more apparent structure than that offered by conventional one-dimensional GC (1-D GC). While some previous studies have alluded to this structure, and used structured retention patterns for some simple classifications, the topic of structured retention in GC×GC has not been studied in any great detail. Using the separation of fatty acid methyl esters (FAME) on both nonpolar/polar and polar/nonpolar column sets, the interaction between the separation dimensions and the sample dimensions is explored here. The GC×GC separation of a series of compounds is presented as a projection of the sample from sample space, a p-dimensional space with dimensions defined by the dimensionality of the sample, into separation space: for GC×GC, a two-dimensional plane passing through the sample space in an orientation defined by the separation conditions. Using this conceptual model and some a priori knowledge of the sample, it is shown how the image of the sample in the separation space can be used to construct an image of the sample in alternate dimensions, such as second dimension retention factor (2k) vs. chain length in the case of FAME. These projections into alternate dimensions should facilitate the interpretation of the complex patterns found within the GC×GC chromatogram for the identification and classification of compounds.  相似文献   

14.
A two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC–TOFMS) method was developed for the hydrocarbon class composition analysis and benzene, toluene, ethylbenzene, and xylene (BTEX) estimation of raffinate column bottom (RCB), which is generated as a by-product from linear alkyl benzene (LAB) plants. The molecular level characterization of RCB is important to generate value-added products for the petrochemical industry. GC×GC–TOFMS was found to be an excellent tool for estimation of hydrocarbon class composition (paraffins, naphthenes, monoaromatics, diaromatics, and polyaromatic hydrocarbons) and trace level BTEX in a single run. The hydrocarbon class composition was validated with the standard method based on HPLC (ASTM D6591) and good correlation was obtained. Finally, RCB is anticipated to be a useful nonhazardous safe by-product which could be used further for generating added value.  相似文献   

15.
The determination of organic sulfur compounds (OSC) in coal is of great interest. Technically and operationally these compounds are not easily removed and promote corrosion of equipment. Environmentally, the burning of sulfur compounds leads to the emission of SO x gases, which are major contributors to acid rain. Health-wise, it is well known that these compounds have mutagenic and carcinogenic properties. Bitumen can be extracted from coal by different techniques, and use of gas chromatography coupled to mass spectrometric detection enables identification of compounds present in coal extracts. The OSC from three different bitumens were tentatively identified by use of three different extraction techniques: accelerated solvent extraction (ASE), ultrasonic extraction (UE), and supercritical-fluid extraction (SFE). Results obtained from one-dimensional gas chromatography (1D GC) coupled to quadrupole mass spectrometric detection (GC–qMS) and from two-dimensional gas chromatography with time-of-flight mass spectrometric detection (GC × GC–TOFMS) were compared. By use of 2D GC, a greater number of OSC were found in ASE bitumen than in SFE and UE bitumens. No OSC were identified with 1D GC–qMS, although some benzothiophenes and dibenzothiophenes were detected by use of EIM and SIM modes. GC × GC–TOFMS applied to investigation of OSC in bitumens resulted in analytical improvement, as more OSC classes and compounds were identified (thiols, sulfides, thiophenes, naphthothiophenes, benzothiophenes, and benzonaphthothiophenes). The roof-tile effect was observed for OSC and PAH in all bitumens. Several co-elutions among analytes and with matrix interferents were solved by use of GC×GC.  相似文献   

16.
Keshet  Uri  Fialkov  Alexander B.  Alon  Tal  Amirav  Aviv 《Chromatographia》2016,79(11):741-754

We designed and operated a new system of pulsed flow modulation (PFM) two dimensional comprehensive gas chromatography (GC × GC) mass spectrometry (MS). This system is based on the combination of PFM–GC × GC with a quadrupole mass spectrometer of GC–MS via a supersonic molecular beams interface and its fly-through Cold EI ion source and applied this system for the analysis of JP8 jet fuel. PFM is a simple GC × GC modulator that does not consume cryogenic gases while providing tunable second GC × GC column injection time for enabling the use of quadrupole based mass spectrometry regardless its limited scanning speed. We analyzed JP8 jet fuel with our new PFM–GC × GC–MS with Cold EI system and found that as the second dimension GC elution time is increased the observed molecular ion mass is reduced. This unique observation that helped in improved sample compounds identification under co-elution conditions was enabled via having abundant molecular ions in Cold EI for all the fuel compounds. We named this type of analysis as PFM–GC × GC × MS. We found and discuss in this paper that PFM–GC × GC–MS with Cold EI combines improved separation of GC × GC with Cold EI benefits of tailing-free ultra-fast ion source response time and enhanced molecular ions and mass spectral isomer and isotope information for the provision of increased sample identification information.

  相似文献   

17.
Comprehensive two-dimensional gas chromatography in combination with time-of-flight mass spectrometry (GC × GC–TOFMS) has been applied for the analysis of volatile compounds in three young South African red wines. In spite of the significant benefits offered by GC × GC–TOFMS for the separation and identification of volatiles in such a complex matrix, previous results utilizing headspace solid phase micro extraction (HS-SPME) demonstrated certain limitations. These were primarily associated with the choice of sample preparation technique, which failed to extract some influential semi-volatile wine constituents. Therefore, in the current report, we utilized solid phase extraction (SPE) in combination with GC × GC–TOFMS for the detailed investigation of particularly low-level semi-volatiles in South African wine. 214 compounds previously reported in grapes and related beverages were tentatively identified based on mass spectral data and retention indices, while 62 additional compounds were positively identified using authentic standards. The method proved particularly beneficial for the analysis of terpenes, lactones and volatile phenols, and allowed us to report the presence of numerous volatile compounds for the first time in Pinotage wines.  相似文献   

18.
Short-chain chlorinated paraffins (SCCPs) are highly complex technical mixtures with thousands of isomers and numerous homologs. They are classified as priority candidate persistent organic pollutants under the Stockholm Convention for their persistence, bioaccumulation, and toxicity. Analyzing SCCPs is challenging because of the complexity of the mixtures. Chromatograms of SCCPs acquired using one-dimensional (1D) gas chromatography (GC) contain a large characteristic “peak” with a broad and unresolved profile. Comprehensive two-dimensional GC (GC×GC) shows excellent potential for separating complex mixtures. In this study, GC×GC coupled with micro electron capture detection (μECD) was used to separate and screen SCCPs. The chromatographic parameters, including the GC column types, oven temperature program, and modulation period, were systematically optimized. The SCCP congeners were separated into groups using a DM-1 column connected to a BPX-50 column. The SCCP congeners in technical mixtures were separated according to the number of chlorine substituents for a given carbon chain length and according to the number of carbon atoms plus chlorine atoms for different carbon chain lengths. A fish tissue sample was analyzed to illustrate the feasibility of the GC×GC–μECD method in analyzing biological samples. Over 1,500 compounds were identified in the fish extract, significantly more than were identified using 1D GC. The detection limits for five selected SCCP congeners were between 1 and 5 pg/L using the GC×GC method, and these were significantly lower than those achieved using 1D GC. This method is a good choice for analysis of SCCPs in environmental samples, exhibiting good separation and good sensitivity. Graphical Abstract
Chromatograms of a technical C10–C13 SCCP mixture with a 55 % (w/w) chlorine content obtained using a gas chromatography–electron capture detection (ECD) and b GC×GC–μECD  相似文献   

19.
A sample of tobacco essential oil was analyzed using gas chromatography-mass spectrometry (GC/MS) and comprehensive two-dimensional gas chromatography coupled to a time-of-flight mass spectrometry (GC × GC/TOFMS), respectively. In the GC/MS analysis, serially coupled columns were used. By comparing the GC/MS results with GC × GC/TOFMS results, many more components in the essential oil could be found within the two-dimensional separation space of GC × GC. The quantitative determination of components in the essential oil was performed by GC × GC with flame ionization detection (FID), using a method of multiple internal standards calibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号